This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| lspsn0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lsp0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 2 | lspsn0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 4 | 1 3 | lsssn0 | ⊢ ( 𝑊 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) |
| 5 | 0ss | ⊢ ∅ ⊆ { 0 } | |
| 6 | 3 2 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ { 0 } ∈ ( LSubSp ‘ 𝑊 ) ∧ ∅ ⊆ { 0 } ) → ( 𝑁 ‘ ∅ ) ⊆ { 0 } ) |
| 7 | 5 6 | mp3an3 | ⊢ ( ( 𝑊 ∈ LMod ∧ { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑁 ‘ ∅ ) ⊆ { 0 } ) |
| 8 | 4 7 | mpdan | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) ⊆ { 0 } ) |
| 9 | 0ss | ⊢ ∅ ⊆ ( Base ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 11 | 10 3 2 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ∅ ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ ∅ ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | 9 11 | mpan2 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 | 1 3 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ∅ ) ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ ( 𝑁 ‘ ∅ ) ) |
| 14 | 12 13 | mpdan | ⊢ ( 𝑊 ∈ LMod → { 0 } ⊆ ( 𝑁 ‘ ∅ ) ) |
| 15 | 8 14 | eqssd | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) = { 0 } ) |