This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| Assertion | lspprat | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprat.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspprat.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprat.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspprat.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lspprat.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspprat.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lspprat.p | ⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 9 | ssdif0 | ⊢ ( 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ↔ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) = ∅ ) | |
| 10 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 13 | 1 12 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 14 | 11 13 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) | |
| 17 | 12 2 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → { ( 0g ‘ 𝑊 ) } ⊆ 𝑈 ) |
| 18 | 11 5 17 | syl2anc | ⊢ ( 𝜑 → { ( 0g ‘ 𝑊 ) } ⊆ 𝑈 ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → { ( 0g ‘ 𝑊 ) } ⊆ 𝑈 ) |
| 20 | 16 19 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → 𝑈 = { ( 0g ‘ 𝑊 ) } ) |
| 21 | 12 3 | lspsn0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
| 22 | 11 21 | syl | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) = { ( 0g ‘ 𝑊 ) } ) |
| 24 | 20 23 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → 𝑈 = ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) ) |
| 25 | sneq | ⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → { 𝑧 } = { ( 0g ‘ 𝑊 ) } ) | |
| 26 | 25 | fveq2d | ⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → ( 𝑁 ‘ { 𝑧 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) ) |
| 27 | 26 | rspceeqv | ⊢ ( ( ( 0g ‘ 𝑊 ) ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { ( 0g ‘ 𝑊 ) } ) ) → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |
| 28 | 15 24 27 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } ) → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |
| 29 | 28 | ex | ⊢ ( 𝜑 → ( 𝑈 ⊆ { ( 0g ‘ 𝑊 ) } → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 30 | 9 29 | biimtrrid | ⊢ ( 𝜑 → ( ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) = ∅ → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 31 | 1 2 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 32 | 5 31 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 33 | 32 | ssdifssd | ⊢ ( 𝜑 → ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ⊆ 𝑉 ) |
| 34 | 33 | sseld | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑧 ∈ 𝑉 ) ) |
| 35 | 1 2 3 4 5 6 7 8 12 | lsppratlem6 | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 36 | 34 35 | jcad | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → ( 𝑧 ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 37 | 36 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑧 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) → ∃ 𝑧 ( 𝑧 ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 38 | n0 | ⊢ ( ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ) | |
| 39 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑉 ∧ 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) | |
| 40 | 37 38 39 | 3imtr4g | ⊢ ( 𝜑 → ( ( 𝑈 ∖ { ( 0g ‘ 𝑊 ) } ) ≠ ∅ → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 41 | 30 40 | pm2.61dne | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑧 } ) ) |