This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspssp.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lspssp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspssp.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lspssp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | 3 1 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 5 | 3 2 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 6 | 4 5 | syl3an2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 7 | 1 2 | lspid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
| 9 | 6 8 | sseqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑈 ) |