This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lspprat . In the first case of lsppratlem1 , since x e/ ( N(/) ) , also Y e. ( N{ x } ) , and since y e. ( N{ X , Y } ) C_ ( N{ X , x } ) and y e/ ( N{ x } ) , we have X e. ( N{ x , y } ) as desired. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprat.v | |- V = ( Base ` W ) |
|
| lspprat.s | |- S = ( LSubSp ` W ) |
||
| lspprat.n | |- N = ( LSpan ` W ) |
||
| lspprat.w | |- ( ph -> W e. LVec ) |
||
| lspprat.u | |- ( ph -> U e. S ) |
||
| lspprat.x | |- ( ph -> X e. V ) |
||
| lspprat.y | |- ( ph -> Y e. V ) |
||
| lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
||
| lsppratlem1.o | |- .0. = ( 0g ` W ) |
||
| lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
||
| lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
||
| lsppratlem3.x3 | |- ( ph -> x e. ( N ` { Y } ) ) |
||
| Assertion | lsppratlem3 | |- ( ph -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | |- V = ( Base ` W ) |
|
| 2 | lspprat.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspprat.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprat.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspprat.u | |- ( ph -> U e. S ) |
|
| 6 | lspprat.x | |- ( ph -> X e. V ) |
|
| 7 | lspprat.y | |- ( ph -> Y e. V ) |
|
| 8 | lspprat.p | |- ( ph -> U C. ( N ` { X , Y } ) ) |
|
| 9 | lsppratlem1.o | |- .0. = ( 0g ` W ) |
|
| 10 | lsppratlem1.x2 | |- ( ph -> x e. ( U \ { .0. } ) ) |
|
| 11 | lsppratlem1.y2 | |- ( ph -> y e. ( U \ ( N ` { x } ) ) ) |
|
| 12 | lsppratlem3.x3 | |- ( ph -> x e. ( N ` { Y } ) ) |
|
| 13 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 14 | 4 13 | syl | |- ( ph -> W e. LMod ) |
| 15 | 7 | snssd | |- ( ph -> { Y } C_ V ) |
| 16 | 1 3 | lspssv | |- ( ( W e. LMod /\ { Y } C_ V ) -> ( N ` { Y } ) C_ V ) |
| 17 | 14 15 16 | syl2anc | |- ( ph -> ( N ` { Y } ) C_ V ) |
| 18 | 17 12 | sseldd | |- ( ph -> x e. V ) |
| 19 | 18 | snssd | |- ( ph -> { x } C_ V ) |
| 20 | 8 | pssssd | |- ( ph -> U C_ ( N ` { X , Y } ) ) |
| 21 | 6 | snssd | |- ( ph -> { X } C_ V ) |
| 22 | 19 21 | unssd | |- ( ph -> ( { x } u. { X } ) C_ V ) |
| 23 | 1 2 3 | lspcl | |- ( ( W e. LMod /\ ( { x } u. { X } ) C_ V ) -> ( N ` ( { x } u. { X } ) ) e. S ) |
| 24 | 14 22 23 | syl2anc | |- ( ph -> ( N ` ( { x } u. { X } ) ) e. S ) |
| 25 | df-pr | |- { X , Y } = ( { X } u. { Y } ) |
|
| 26 | 1 3 | lspssid | |- ( ( W e. LMod /\ ( { x } u. { X } ) C_ V ) -> ( { x } u. { X } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 27 | 14 22 26 | syl2anc | |- ( ph -> ( { x } u. { X } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 28 | 27 | unssbd | |- ( ph -> { X } C_ ( N ` ( { x } u. { X } ) ) ) |
| 29 | ssun1 | |- { x } C_ ( { x } u. { X } ) |
|
| 30 | 29 | a1i | |- ( ph -> { x } C_ ( { x } u. { X } ) ) |
| 31 | 1 3 | lspss | |- ( ( W e. LMod /\ ( { x } u. { X } ) C_ V /\ { x } C_ ( { x } u. { X } ) ) -> ( N ` { x } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 32 | 14 22 30 31 | syl3anc | |- ( ph -> ( N ` { x } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 33 | 0ss | |- (/) C_ V |
|
| 34 | 33 | a1i | |- ( ph -> (/) C_ V ) |
| 35 | uncom | |- ( (/) u. { Y } ) = ( { Y } u. (/) ) |
|
| 36 | un0 | |- ( { Y } u. (/) ) = { Y } |
|
| 37 | 35 36 | eqtri | |- ( (/) u. { Y } ) = { Y } |
| 38 | 37 | fveq2i | |- ( N ` ( (/) u. { Y } ) ) = ( N ` { Y } ) |
| 39 | 12 38 | eleqtrrdi | |- ( ph -> x e. ( N ` ( (/) u. { Y } ) ) ) |
| 40 | 10 | eldifbd | |- ( ph -> -. x e. { .0. } ) |
| 41 | 9 3 | lsp0 | |- ( W e. LMod -> ( N ` (/) ) = { .0. } ) |
| 42 | 14 41 | syl | |- ( ph -> ( N ` (/) ) = { .0. } ) |
| 43 | 40 42 | neleqtrrd | |- ( ph -> -. x e. ( N ` (/) ) ) |
| 44 | 39 43 | eldifd | |- ( ph -> x e. ( ( N ` ( (/) u. { Y } ) ) \ ( N ` (/) ) ) ) |
| 45 | 1 2 3 | lspsolv | |- ( ( W e. LVec /\ ( (/) C_ V /\ Y e. V /\ x e. ( ( N ` ( (/) u. { Y } ) ) \ ( N ` (/) ) ) ) ) -> Y e. ( N ` ( (/) u. { x } ) ) ) |
| 46 | 4 34 7 44 45 | syl13anc | |- ( ph -> Y e. ( N ` ( (/) u. { x } ) ) ) |
| 47 | uncom | |- ( (/) u. { x } ) = ( { x } u. (/) ) |
|
| 48 | un0 | |- ( { x } u. (/) ) = { x } |
|
| 49 | 47 48 | eqtri | |- ( (/) u. { x } ) = { x } |
| 50 | 49 | fveq2i | |- ( N ` ( (/) u. { x } ) ) = ( N ` { x } ) |
| 51 | 46 50 | eleqtrdi | |- ( ph -> Y e. ( N ` { x } ) ) |
| 52 | 32 51 | sseldd | |- ( ph -> Y e. ( N ` ( { x } u. { X } ) ) ) |
| 53 | 52 | snssd | |- ( ph -> { Y } C_ ( N ` ( { x } u. { X } ) ) ) |
| 54 | 28 53 | unssd | |- ( ph -> ( { X } u. { Y } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 55 | 25 54 | eqsstrid | |- ( ph -> { X , Y } C_ ( N ` ( { x } u. { X } ) ) ) |
| 56 | 2 3 | lspssp | |- ( ( W e. LMod /\ ( N ` ( { x } u. { X } ) ) e. S /\ { X , Y } C_ ( N ` ( { x } u. { X } ) ) ) -> ( N ` { X , Y } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 57 | 14 24 55 56 | syl3anc | |- ( ph -> ( N ` { X , Y } ) C_ ( N ` ( { x } u. { X } ) ) ) |
| 58 | 20 57 | sstrd | |- ( ph -> U C_ ( N ` ( { x } u. { X } ) ) ) |
| 59 | 58 | ssdifd | |- ( ph -> ( U \ ( N ` { x } ) ) C_ ( ( N ` ( { x } u. { X } ) ) \ ( N ` { x } ) ) ) |
| 60 | 59 11 | sseldd | |- ( ph -> y e. ( ( N ` ( { x } u. { X } ) ) \ ( N ` { x } ) ) ) |
| 61 | 1 2 3 | lspsolv | |- ( ( W e. LVec /\ ( { x } C_ V /\ X e. V /\ y e. ( ( N ` ( { x } u. { X } ) ) \ ( N ` { x } ) ) ) ) -> X e. ( N ` ( { x } u. { y } ) ) ) |
| 62 | 4 19 6 60 61 | syl13anc | |- ( ph -> X e. ( N ` ( { x } u. { y } ) ) ) |
| 63 | df-pr | |- { x , y } = ( { x } u. { y } ) |
|
| 64 | 63 | fveq2i | |- ( N ` { x , y } ) = ( N ` ( { x } u. { y } ) ) |
| 65 | 62 64 | eleqtrrdi | |- ( ph -> X e. ( N ` { x , y } ) ) |
| 66 | 1 2 | lssss | |- ( U e. S -> U C_ V ) |
| 67 | 5 66 | syl | |- ( ph -> U C_ V ) |
| 68 | 67 | ssdifssd | |- ( ph -> ( U \ ( N ` { x } ) ) C_ V ) |
| 69 | 68 11 | sseldd | |- ( ph -> y e. V ) |
| 70 | 18 69 | prssd | |- ( ph -> { x , y } C_ V ) |
| 71 | snsspr1 | |- { x } C_ { x , y } |
|
| 72 | 71 | a1i | |- ( ph -> { x } C_ { x , y } ) |
| 73 | 1 3 | lspss | |- ( ( W e. LMod /\ { x , y } C_ V /\ { x } C_ { x , y } ) -> ( N ` { x } ) C_ ( N ` { x , y } ) ) |
| 74 | 14 70 72 73 | syl3anc | |- ( ph -> ( N ` { x } ) C_ ( N ` { x , y } ) ) |
| 75 | 74 51 | sseldd | |- ( ph -> Y e. ( N ` { x , y } ) ) |
| 76 | 65 75 | jca | |- ( ph -> ( X e. ( N ` { x , y } ) /\ Y e. ( N ` { x , y } ) ) ) |