This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelval2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmelval2.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lsmelval2.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmelval2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmelval2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsmelval2.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) | ||
| lsmelval2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| Assertion | lsmelval2 | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelval2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmelval2.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lsmelval2.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | lsmelval2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | lsmelval2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | lsmelval2.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) | |
| 7 | lsmelval2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 8 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 9 | 5 6 8 | syl2anc | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 10 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 | 5 7 10 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 12 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 13 | 12 3 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 14 | 9 11 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑇 ∈ 𝑆 ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑇 ) | |
| 18 | 1 2 | lssel | ⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑉 ) |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑉 ) |
| 20 | 1 2 4 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ) |
| 21 | 15 19 20 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ) |
| 22 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ) → ( 𝑁 ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 | 15 21 22 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) | |
| 26 | 1 2 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑉 ) |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑉 ) |
| 28 | 1 2 4 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) |
| 29 | 15 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) |
| 30 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) → ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 31 | 15 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) |
| 33 | 15 19 32 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) |
| 34 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉 ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑧 } ) ) |
| 35 | 15 27 34 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑧 } ) ) |
| 36 | 12 3 | lsmelvali | ⊢ ( ( ( ( 𝑁 ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑧 } ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 37 | 23 31 33 35 36 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 38 | eleq1a | ⊢ ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 40 | 2 3 | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ∈ 𝑆 ) |
| 41 | 15 21 29 40 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ∈ 𝑆 ) |
| 42 | 1 2 4 15 41 | ellspsn6 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 43 | 39 42 | sylibd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 44 | 43 | reximdvva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 45 | 14 44 | sylbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 46 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 47 | 2 4 15 16 17 | ellspsn5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑦 } ) ⊆ 𝑇 ) |
| 48 | 3 | lsmless1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑦 } ) ⊆ 𝑇 ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 49 | 46 31 47 48 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 50 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 51 | 2 4 15 24 25 | ellspsn5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑈 ) |
| 52 | 3 | lsmless2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑈 ) → ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 53 | 46 50 51 52 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 54 | 49 53 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 55 | 54 | sseld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 56 | 42 55 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 57 | 56 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 58 | 45 57 | impbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 59 | r19.42v | ⊢ ( ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) | |
| 60 | 59 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑇 ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 61 | r19.42v | ⊢ ( ∃ 𝑦 ∈ 𝑇 ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) | |
| 62 | 60 61 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 63 | 58 62 | bitrdi | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |