This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsrex2v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| ceqsrex2v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | ceqsrex2v | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsrex2v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | ceqsrex2v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | anass | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐷 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐷 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 5 | r19.42v | ⊢ ( ∃ 𝑦 ∈ 𝐷 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐷 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 8 | 1 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 10 | 9 | ceqsrexv | ⊢ ( 𝐴 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 11 | 7 10 | bitrid | ⊢ ( 𝐴 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 12 | 2 | ceqsrexv | ⊢ ( 𝐵 ∈ 𝐷 → ( ∃ 𝑦 ∈ 𝐷 ( 𝑦 = 𝐵 ∧ 𝜓 ) ↔ 𝜒 ) ) |
| 13 | 11 12 | sylan9bb | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜒 ) ) |