This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmspsn.v | |- V = ( Base ` W ) |
|
| lsmspsn.a | |- .+ = ( +g ` W ) |
||
| lsmspsn.f | |- F = ( Scalar ` W ) |
||
| lsmspsn.k | |- K = ( Base ` F ) |
||
| lsmspsn.t | |- .x. = ( .s ` W ) |
||
| lsmspsn.p | |- .(+) = ( LSSum ` W ) |
||
| lsmspsn.n | |- N = ( LSpan ` W ) |
||
| lsmspsn.w | |- ( ph -> W e. LMod ) |
||
| lsmspsn.x | |- ( ph -> X e. V ) |
||
| lsmspsn.y | |- ( ph -> Y e. V ) |
||
| Assertion | lsmspsn | |- ( ph -> ( U e. ( ( N ` { X } ) .(+) ( N ` { Y } ) ) <-> E. j e. K E. k e. K U = ( ( j .x. X ) .+ ( k .x. Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmspsn.v | |- V = ( Base ` W ) |
|
| 2 | lsmspsn.a | |- .+ = ( +g ` W ) |
|
| 3 | lsmspsn.f | |- F = ( Scalar ` W ) |
|
| 4 | lsmspsn.k | |- K = ( Base ` F ) |
|
| 5 | lsmspsn.t | |- .x. = ( .s ` W ) |
|
| 6 | lsmspsn.p | |- .(+) = ( LSSum ` W ) |
|
| 7 | lsmspsn.n | |- N = ( LSpan ` W ) |
|
| 8 | lsmspsn.w | |- ( ph -> W e. LMod ) |
|
| 9 | lsmspsn.x | |- ( ph -> X e. V ) |
|
| 10 | lsmspsn.y | |- ( ph -> Y e. V ) |
|
| 11 | 1 7 | lspsnsubg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 12 | 8 9 11 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 13 | 1 7 | lspsnsubg | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 14 | 8 10 13 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 15 | 2 6 | lsmelval | |- ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) -> ( U e. ( ( N ` { X } ) .(+) ( N ` { Y } ) ) <-> E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) U = ( v .+ w ) ) ) |
| 16 | 12 14 15 | syl2anc | |- ( ph -> ( U e. ( ( N ` { X } ) .(+) ( N ` { Y } ) ) <-> E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) U = ( v .+ w ) ) ) |
| 17 | 3 4 1 5 7 | ellspsn | |- ( ( W e. LMod /\ X e. V ) -> ( v e. ( N ` { X } ) <-> E. j e. K v = ( j .x. X ) ) ) |
| 18 | 8 9 17 | syl2anc | |- ( ph -> ( v e. ( N ` { X } ) <-> E. j e. K v = ( j .x. X ) ) ) |
| 19 | 3 4 1 5 7 | ellspsn | |- ( ( W e. LMod /\ Y e. V ) -> ( w e. ( N ` { Y } ) <-> E. k e. K w = ( k .x. Y ) ) ) |
| 20 | 8 10 19 | syl2anc | |- ( ph -> ( w e. ( N ` { Y } ) <-> E. k e. K w = ( k .x. Y ) ) ) |
| 21 | 18 20 | anbi12d | |- ( ph -> ( ( v e. ( N ` { X } ) /\ w e. ( N ` { Y } ) ) <-> ( E. j e. K v = ( j .x. X ) /\ E. k e. K w = ( k .x. Y ) ) ) ) |
| 22 | 21 | biimpa | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ w e. ( N ` { Y } ) ) ) -> ( E. j e. K v = ( j .x. X ) /\ E. k e. K w = ( k .x. Y ) ) ) |
| 23 | 22 | biantrurd | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ w e. ( N ` { Y } ) ) ) -> ( U = ( v .+ w ) <-> ( ( E. j e. K v = ( j .x. X ) /\ E. k e. K w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) ) |
| 24 | r19.41v | |- ( E. k e. K ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> ( E. k e. K ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) |
|
| 25 | 24 | rexbii | |- ( E. j e. K E. k e. K ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> E. j e. K ( E. k e. K ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) |
| 26 | r19.41v | |- ( E. j e. K ( E. k e. K ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> ( E. j e. K E. k e. K ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) |
|
| 27 | reeanv | |- ( E. j e. K E. k e. K ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) <-> ( E. j e. K v = ( j .x. X ) /\ E. k e. K w = ( k .x. Y ) ) ) |
|
| 28 | 27 | anbi1i | |- ( ( E. j e. K E. k e. K ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> ( ( E. j e. K v = ( j .x. X ) /\ E. k e. K w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) |
| 29 | 25 26 28 | 3bitrri | |- ( ( ( E. j e. K v = ( j .x. X ) /\ E. k e. K w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> E. j e. K E. k e. K ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) |
| 30 | 23 29 | bitrdi | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ w e. ( N ` { Y } ) ) ) -> ( U = ( v .+ w ) <-> E. j e. K E. k e. K ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) ) |
| 31 | 30 | 2rexbidva | |- ( ph -> ( E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) U = ( v .+ w ) <-> E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) E. j e. K E. k e. K ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) ) |
| 32 | rexrot4 | |- ( E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) E. j e. K E. k e. K ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> E. j e. K E. k e. K E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) |
|
| 33 | 31 32 | bitrdi | |- ( ph -> ( E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) U = ( v .+ w ) <-> E. j e. K E. k e. K E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) ) ) |
| 34 | 8 | adantr | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> W e. LMod ) |
| 35 | simprl | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> j e. K ) |
|
| 36 | 9 | adantr | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> X e. V ) |
| 37 | 1 5 3 4 7 34 35 36 | ellspsni | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> ( j .x. X ) e. ( N ` { X } ) ) |
| 38 | simprr | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> k e. K ) |
|
| 39 | 10 | adantr | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> Y e. V ) |
| 40 | 1 5 3 4 7 34 38 39 | ellspsni | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> ( k .x. Y ) e. ( N ` { Y } ) ) |
| 41 | oveq1 | |- ( v = ( j .x. X ) -> ( v .+ w ) = ( ( j .x. X ) .+ w ) ) |
|
| 42 | 41 | eqeq2d | |- ( v = ( j .x. X ) -> ( U = ( v .+ w ) <-> U = ( ( j .x. X ) .+ w ) ) ) |
| 43 | oveq2 | |- ( w = ( k .x. Y ) -> ( ( j .x. X ) .+ w ) = ( ( j .x. X ) .+ ( k .x. Y ) ) ) |
|
| 44 | 43 | eqeq2d | |- ( w = ( k .x. Y ) -> ( U = ( ( j .x. X ) .+ w ) <-> U = ( ( j .x. X ) .+ ( k .x. Y ) ) ) ) |
| 45 | 42 44 | ceqsrex2v | |- ( ( ( j .x. X ) e. ( N ` { X } ) /\ ( k .x. Y ) e. ( N ` { Y } ) ) -> ( E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> U = ( ( j .x. X ) .+ ( k .x. Y ) ) ) ) |
| 46 | 37 40 45 | syl2anc | |- ( ( ph /\ ( j e. K /\ k e. K ) ) -> ( E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> U = ( ( j .x. X ) .+ ( k .x. Y ) ) ) ) |
| 47 | 46 | 2rexbidva | |- ( ph -> ( E. j e. K E. k e. K E. v e. ( N ` { X } ) E. w e. ( N ` { Y } ) ( ( v = ( j .x. X ) /\ w = ( k .x. Y ) ) /\ U = ( v .+ w ) ) <-> E. j e. K E. k e. K U = ( ( j .x. X ) .+ ( k .x. Y ) ) ) ) |
| 48 | 16 33 47 | 3bitrd | |- ( ph -> ( U e. ( ( N ` { X } ) .(+) ( N ` { Y } ) ) <-> E. j e. K E. k e. K U = ( ( j .x. X ) .+ ( k .x. Y ) ) ) ) |