This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn5b.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ellspsn5b.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| ellspsn5b.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| ellspsn5b.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| ellspsn5b.a | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| Assertion | ellspsn6 | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ellspsn5b.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | ellspsn5b.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | ellspsn5b.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | ellspsn5b.a | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | 1 2 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) | |
| 11 | 2 3 | lspsnss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 13 | 7 12 | jca | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
| 14 | 1 3 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 15 | 4 14 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 | ssel | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) → 𝑋 ∈ 𝑈 ) ) | |
| 17 | 15 16 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 18 | 17 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) → 𝑋 ∈ 𝑈 ) |
| 19 | 13 18 | impbida | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |