This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsp.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lsmsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmsp.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| Assertion | lsmsp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsp.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lsmsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lsmsp.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | 5 1 | lssss | ⊢ ( 𝑇 ∈ 𝑆 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 | 5 1 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 10 | 7 9 | unssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 11 | 5 2 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 12 | 4 10 11 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 13 | 12 | unssad | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 14 | 12 | unssbd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 15 | 1 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 17 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ∈ 𝑆 ) | |
| 18 | 16 17 | sseldd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 19 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ 𝑆 ) | |
| 20 | 16 19 | sseldd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 | 5 1 2 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ 𝑆 ) |
| 22 | 4 10 21 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ 𝑆 ) |
| 23 | 16 22 | sseldd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 | 3 | lsmlub | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑇 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∧ 𝑈 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ↔ ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
| 25 | 18 20 23 24 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑇 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∧ 𝑈 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ↔ ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
| 26 | 13 14 25 | mpbi2and | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 27 | 1 3 | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 28 | 3 | lsmunss | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 29 | 18 20 28 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 30 | 1 2 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 31 | 4 27 29 30 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 32 | 26 31 | eqssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |