This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmless1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑆 ⊕ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝐺 ∈ Grp ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 4 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | 4 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | simp3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝑇 ) | |
| 10 | 4 1 | lsmless1x | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑆 ⊕ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 11 | 3 6 8 9 10 | syl31anc | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑆 ⊕ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |