This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1add2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| o1add2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| lo1add.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | ||
| lo1add.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) | ||
| lo1mul.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | lo1mul | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1add2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | o1add2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 3 | lo1add.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) | |
| 4 | lo1add.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) | |
| 5 | lo1mul.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 6 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) | |
| 7 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 8 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 10 | lo1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 12 | 9 11 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
| 14 | rexanre | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑚 ∈ ℝ ) | |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑛 ∈ ℝ ) | |
| 18 | 0re | ⊢ 0 ∈ ℝ | |
| 19 | ifcl | ⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) |
| 21 | 16 20 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ∈ ℝ ) |
| 22 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) | |
| 23 | max2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) | |
| 24 | 18 22 23 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) |
| 25 | 2 4 | lo1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 27 | 22 18 19 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) |
| 28 | letr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) → ( ( 𝐶 ≤ 𝑛 ∧ 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) | |
| 29 | 26 22 27 28 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 ≤ 𝑛 ∧ 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
| 30 | 24 29 | mpan2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 𝑛 → 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
| 31 | 1 3 | lo1mptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 33 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 34 | 32 33 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 35 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ ℝ ) | |
| 36 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) | |
| 37 | 18 22 36 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) |
| 38 | 27 37 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
| 39 | lemul12b | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝑚 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) | |
| 40 | 34 35 26 38 39 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) |
| 41 | 30 40 | sylan2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) |
| 42 | 41 | imim2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
| 43 | 42 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
| 44 | breq2 | ⊢ ( 𝑝 = ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( ( 𝐵 · 𝐶 ) ≤ 𝑝 ↔ ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) | |
| 45 | 44 | imbi2d | ⊢ ( 𝑝 = ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
| 46 | 45 | ralbidv | ⊢ ( 𝑝 = ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
| 47 | 46 | rspcev | ⊢ ( ( ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) → ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) |
| 48 | 21 43 47 | syl6an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
| 49 | 48 | reximdv | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
| 50 | 15 49 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
| 51 | 50 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
| 52 | 6 51 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
| 53 | 12 31 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 54 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) | |
| 55 | 53 54 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 56 | 12 25 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
| 57 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) | |
| 58 | 56 57 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
| 59 | 55 58 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) ↔ ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
| 60 | 31 25 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 61 | 12 60 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
| 62 | 52 59 61 | 3imtr4d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
| 63 | 3 4 62 | mp2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ) |