This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul12b | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemul2a | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ) | |
| 2 | 1 | ex | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐶 ≤ 𝐷 → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ) ) |
| 3 | 2 | 3comr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 ≤ 𝐷 → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ) ) |
| 4 | 3 | 3expb | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 ≤ 𝐷 → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ) ) |
| 5 | 4 | adantrrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( 𝐶 ≤ 𝐷 → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ) ) |
| 6 | 5 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( 𝐶 ≤ 𝐷 → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ) ) |
| 7 | lemul1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) | |
| 8 | 7 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| 9 | 8 | ad4ant134 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| 10 | 9 | adantrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| 11 | 6 10 | anim12d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐶 ≤ 𝐷 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ∧ ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) ) ) |
| 12 | 11 | ancomsd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ∧ ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) ) ) |
| 13 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) | |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 15 | 14 | ad2ant2r | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 16 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐴 · 𝐷 ) ∈ ℝ ) | |
| 17 | 16 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · 𝐷 ) ∈ ℝ ) |
| 18 | 17 | ad2ant2rl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( 𝐴 · 𝐷 ) ∈ ℝ ) |
| 19 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵 · 𝐷 ) ∈ ℝ ) | |
| 20 | 19 | adantrr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · 𝐷 ) ∈ ℝ ) |
| 21 | 20 | ad2ant2l | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( 𝐵 · 𝐷 ) ∈ ℝ ) |
| 22 | letr | ⊢ ( ( ( 𝐴 · 𝐶 ) ∈ ℝ ∧ ( 𝐴 · 𝐷 ) ∈ ℝ ∧ ( 𝐵 · 𝐷 ) ∈ ℝ ) → ( ( ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ∧ ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) | |
| 23 | 15 18 21 22 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · 𝐷 ) ∧ ( 𝐴 · 𝐷 ) ≤ ( 𝐵 · 𝐷 ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| 24 | 12 23 | syld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |