This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmres.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| lmres.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | ||
| lmres.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| Assertion | lmres | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmres.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | lmres.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 3 | lmres.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 6 | cnex | ⊢ ℂ ∈ V | |
| 7 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
| 8 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 9 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 10 | 8 9 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
| 11 | pmss12g | ⊢ ( ( ( 𝑋 ⊆ 𝑋 ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ ) ∧ ( 𝑋 ∈ 𝐽 ∧ ℂ ∈ V ) ) → ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ⊆ ( 𝑋 ↑pm ℂ ) ) | |
| 12 | 7 10 11 | mpanl12 | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ ℂ ∈ V ) → ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ⊆ ( 𝑋 ↑pm ℂ ) ) |
| 13 | 5 6 12 | sylancl | ⊢ ( 𝜑 → ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ⊆ ( 𝑋 ↑pm ℂ ) ) |
| 14 | fvex | ⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V | |
| 15 | pmresg | ⊢ ( ( ( ℤ≥ ‘ 𝑀 ) ∈ V ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 16 | 14 2 15 | sylancr | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ) |
| 17 | 13 16 | sseldd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ) |
| 18 | 17 2 | 2thd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ↔ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ) |
| 19 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 20 | 19 | uztrn2 | ⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 21 | dmres | ⊢ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ dom 𝐹 ) | |
| 22 | 21 | elin2 | ⊢ ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ dom 𝐹 ) ) |
| 23 | 22 | baib | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ↔ 𝑘 ∈ dom 𝐹 ) ) |
| 24 | fvres | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 26 | 23 25 | anbi12d | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 27 | 20 26 | syl | ⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 28 | 27 | ralbidva | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 29 | 28 | rexbiia | ⊢ ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 30 | 29 | imbi2i | ⊢ ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 31 | 30 | ralbii | ⊢ ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 32 | 31 | a1i | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 33 | 18 32 | 3anbi13d | ⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 34 | 1 19 3 | lmbr2 | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 35 | 1 19 3 | lmbr2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 36 | 33 34 35 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |