This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmss12g | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ↑pm 𝐵 ) ⊆ ( 𝐶 ↑pm 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss12 | ⊢ ( ( 𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) |
| 3 | sstr | ⊢ ( ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) | |
| 4 | 3 | expcom | ⊢ ( ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) → ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) |
| 6 | 5 | anim2d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
| 8 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 9 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) → 𝐵 ∈ V ) | |
| 10 | elpmg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
| 12 | 11 | an4s | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
| 13 | elpmg | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ( 𝑓 ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
| 15 | 7 12 14 | 3imtr4d | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → 𝑓 ∈ ( 𝐶 ↑pm 𝐷 ) ) ) |
| 16 | 15 | ssrdv | ⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ↑pm 𝐵 ) ⊆ ( 𝐶 ↑pm 𝐷 ) ) |