This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F converges, there is some upper integer set on which F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| lmff.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| lmff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmff.5 | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | ||
| Assertion | lmff | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | lmff.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | lmff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | lmff.5 | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 5 | eldm2g | ⊢ ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) ) | |
| 6 | 5 | ibi | ⊢ ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
| 8 | df-br | ⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) |
| 10 | 7 9 | sylibr | ⊢ ( 𝜑 → ∃ 𝑦 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 11 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) | |
| 12 | 2 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 13 | eleq2 | ⊢ ( 𝑗 = 𝑋 → ( 𝑦 ∈ 𝑗 ↔ 𝑦 ∈ 𝑋 ) ) | |
| 14 | feq3 | ⊢ ( 𝑗 = 𝑋 → ( ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ↔ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) | |
| 15 | 14 | rexbidv | ⊢ ( 𝑗 = 𝑋 → ( ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ↔ ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑗 = 𝑋 → ( ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ↔ ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) ) |
| 17 | 2 | lmbr | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑗 ∈ 𝐽 ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ) ) ) |
| 18 | 17 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑗 ∈ 𝐽 ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ) ) |
| 19 | 18 | simp3d | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∀ 𝑗 ∈ 𝐽 ( 𝑦 ∈ 𝑗 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑗 ) ) |
| 20 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑋 ∈ 𝐽 ) |
| 23 | 16 19 22 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) ) |
| 24 | 12 23 | mpd | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) |
| 25 | 10 24 | exlimddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ) |
| 26 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 27 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 28 | reseq2 | ⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 29 | id | ⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → 𝑥 = ( ℤ≥ ‘ 𝑗 ) ) | |
| 30 | 28 29 | feq12d | ⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) |
| 31 | 30 | rexrn | ⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) |
| 32 | 26 27 31 | mp2b | ⊢ ( ∃ 𝑥 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
| 33 | 25 32 | sylib | ⊢ ( 𝜑 → ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
| 34 | 1 | rexuz3 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
| 36 | 18 | simp1d | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 37 | 10 36 | exlimddv | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 38 | pmfun | ⊢ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) → Fun 𝐹 ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 40 | ffvresb | ⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
| 42 | 41 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
| 43 | 41 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑥 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) ) |
| 44 | 35 42 43 | 3bitr4d | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) |
| 45 | 33 44 | mpbird | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |