This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmbr.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| lmbr2.4 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| lmbr2.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| Assertion | lmbr2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmbr.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | lmbr2.4 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | lmbr2.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | 1 | lmbr | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ) ) |
| 5 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 6 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 7 | reseq2 | ⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 8 | id | ⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → 𝑧 = ( ℤ≥ ‘ 𝑗 ) ) | |
| 9 | 7 8 | feq12d | ⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ) ) |
| 10 | 9 | rexrn | ⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ) ) |
| 11 | 5 6 10 | mp2b | ⊢ ( ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ) |
| 12 | pmfun | ⊢ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) → Fun 𝐹 ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → Fun 𝐹 ) |
| 14 | ffvresb | ⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → 𝑀 ∈ ℤ ) |
| 18 | 2 | rexuz3 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 20 | 16 19 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 21 | 11 20 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 23 | 22 | ralbidv | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 24 | 23 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 25 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ) | |
| 26 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) | |
| 27 | 24 25 26 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑧 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝑢 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
| 28 | 4 27 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |