This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsmmulgdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvsmmulgdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsmmulgdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsmmulgdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodvsmmulgdi.p | ⊢ ↑ = ( .g ‘ 𝑊 ) | ||
| lmodvsmmulgdi.e | ⊢ 𝐸 = ( .g ‘ 𝐹 ) | ||
| Assertion | lmodvsmmulgdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsmmulgdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsmmulgdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvsmmulgdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvsmmulgdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lmodvsmmulgdi.p | ⊢ ↑ = ( .g ‘ 𝑊 ) | |
| 6 | lmodvsmmulgdi.e | ⊢ 𝐸 = ( .g ‘ 𝐹 ) | |
| 7 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( 0 ↑ ( 𝐶 · 𝑋 ) ) ) | |
| 8 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 𝐸 𝐶 ) = ( 0 𝐸 𝐶 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ) | |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐸 𝐶 ) = ( 𝑦 𝐸 𝐶 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) ) | |
| 18 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝐸 𝐶 ) = ( ( 𝑦 + 1 ) 𝐸 𝐶 ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) ) | |
| 23 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 𝐸 𝐶 ) = ( 𝑁 𝐸 𝐶 ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 27 | simpr | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → 𝑊 ∈ LMod ) | |
| 28 | simpr | ⊢ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → 𝑋 ∈ 𝑉 ) |
| 30 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 31 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 32 | 1 2 3 30 31 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 33 | 27 29 32 | syl2anc | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 34 | simpl | ⊢ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝐶 ∈ 𝐾 ) | |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → 𝐶 ∈ 𝐾 ) |
| 36 | 4 30 6 | mulg0 | ⊢ ( 𝐶 ∈ 𝐾 → ( 0 𝐸 𝐶 ) = ( 0g ‘ 𝐹 ) ) |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 𝐸 𝐶 ) = ( 0g ‘ 𝐹 ) ) |
| 38 | 37 | oveq1d | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 0 𝐸 𝐶 ) · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
| 39 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐶 · 𝑋 ) ∈ 𝑉 ) |
| 40 | 27 35 29 39 | syl3anc | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝐶 · 𝑋 ) ∈ 𝑉 ) |
| 41 | 1 31 5 | mulg0 | ⊢ ( ( 𝐶 · 𝑋 ) ∈ 𝑉 → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 42 | 40 41 | syl | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 43 | 33 38 42 | 3eqtr4rd | ⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) |
| 44 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 45 | 44 | grpmndd | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Mnd ) |
| 46 | 45 | ad2antll | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑊 ∈ Mnd ) |
| 47 | simpl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑦 ∈ ℕ0 ) | |
| 48 | 40 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( 𝐶 · 𝑋 ) ∈ 𝑉 ) |
| 49 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 50 | 1 5 49 | mulgnn0p1 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐶 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 51 | 46 47 48 50 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) ∧ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 53 | oveq1 | ⊢ ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) → ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) | |
| 54 | 27 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑊 ∈ LMod ) |
| 55 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 56 | ringmnd | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Mnd ) | |
| 57 | 55 56 | syl | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Mnd ) |
| 58 | 57 | ad2antll | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝐹 ∈ Mnd ) |
| 59 | simprll | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝐶 ∈ 𝐾 ) | |
| 60 | 4 6 58 47 59 | mulgnn0cld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( 𝑦 𝐸 𝐶 ) ∈ 𝐾 ) |
| 61 | 29 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑋 ∈ 𝑉 ) |
| 62 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 63 | 1 49 2 3 4 62 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 𝐸 𝐶 ) ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 64 | 54 60 59 61 63 | syl13anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 65 | 4 6 62 | mulgnn0p1 | ⊢ ( ( 𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ 𝐾 ) → ( ( 𝑦 + 1 ) 𝐸 𝐶 ) = ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) ) |
| 66 | 58 47 59 65 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( 𝑦 + 1 ) 𝐸 𝐶 ) = ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) ) |
| 67 | 66 | eqcomd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) = ( ( 𝑦 + 1 ) 𝐸 𝐶 ) ) |
| 68 | 67 | oveq1d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 69 | 64 68 | eqtr3d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 70 | 53 69 | sylan9eqr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) ∧ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 71 | 52 70 | eqtrd | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) ∧ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 72 | 71 | exp31 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 73 | 72 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 74 | 11 16 21 26 43 73 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 75 | 74 | exp4c | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐶 ∈ 𝐾 → ( 𝑋 ∈ 𝑉 → ( 𝑊 ∈ LMod → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) ) ) |
| 76 | 75 | 3imp21 | ⊢ ( ( 𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ LMod → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 77 | 76 | impcom | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) |