This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for lmodfopne . (Contributed by AV, 2-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodfopne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| lmodfopne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | ||
| lmodfopne.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lmodfopne.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| lmodfopne.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| Assertion | lmodfopnelem1 | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| 2 | lmodfopne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | |
| 3 | lmodfopne.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lmodfopne.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 5 | lmodfopne.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | 3 4 5 1 | lmodscaf | ⊢ ( 𝑊 ∈ LMod → · : ( 𝐾 × 𝑉 ) ⟶ 𝑉 ) |
| 7 | 6 | ffnd | ⊢ ( 𝑊 ∈ LMod → · Fn ( 𝐾 × 𝑉 ) ) |
| 8 | 3 2 | plusffn | ⊢ + Fn ( 𝑉 × 𝑉 ) |
| 9 | fneq1 | ⊢ ( + = · → ( + Fn ( 𝑉 × 𝑉 ) ↔ · Fn ( 𝑉 × 𝑉 ) ) ) | |
| 10 | fndmu | ⊢ ( ( · Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) | |
| 11 | 10 | ex | ⊢ ( · Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) |
| 12 | 9 11 | biimtrdi | ⊢ ( + = · → ( + Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) ) |
| 13 | 12 | com13 | ⊢ ( · Fn ( 𝐾 × 𝑉 ) → ( + Fn ( 𝑉 × 𝑉 ) → ( + = · → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) ) |
| 14 | 13 | impcom | ⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( + = · → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) |
| 15 | 3 | lmodbn0 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ ) |
| 16 | xp11 | ⊢ ( ( 𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅ ) → ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ↔ ( 𝑉 = 𝐾 ∧ 𝑉 = 𝑉 ) ) ) | |
| 17 | 15 15 16 | syl2anc | ⊢ ( 𝑊 ∈ LMod → ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ↔ ( 𝑉 = 𝐾 ∧ 𝑉 = 𝑉 ) ) ) |
| 18 | 17 | simprbda | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) → 𝑉 = 𝐾 ) |
| 19 | 18 | expcom | ⊢ ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) → ( 𝑊 ∈ LMod → 𝑉 = 𝐾 ) ) |
| 20 | 14 19 | syl6 | ⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( + = · → ( 𝑊 ∈ LMod → 𝑉 = 𝐾 ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) ) |
| 22 | 21 | ex | ⊢ ( + Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) ) ) |
| 23 | 22 | com23 | ⊢ ( + Fn ( 𝑉 × 𝑉 ) → ( 𝑊 ∈ LMod → ( · Fn ( 𝐾 × 𝑉 ) → ( + = · → 𝑉 = 𝐾 ) ) ) ) |
| 24 | 8 23 | ax-mp | ⊢ ( 𝑊 ∈ LMod → ( · Fn ( 𝐾 × 𝑉 ) → ( + = · → 𝑉 = 𝐾 ) ) ) |
| 25 | 7 24 | mpd | ⊢ ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 ) |