This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlsp.v | |- V = ( Base ` S ) |
|
| lmhmlsp.k | |- K = ( LSpan ` S ) |
||
| lmhmlsp.l | |- L = ( LSpan ` T ) |
||
| Assertion | lmhmlsp | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) = ( L ` ( F " U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlsp.v | |- V = ( Base ` S ) |
|
| 2 | lmhmlsp.k | |- K = ( LSpan ` S ) |
|
| 3 | lmhmlsp.l | |- L = ( LSpan ` T ) |
|
| 4 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 5 | 1 4 | lmhmf | |- ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) |
| 6 | 5 | adantr | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> F : V --> ( Base ` T ) ) |
| 7 | 6 | ffund | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> Fun F ) |
| 8 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 9 | 8 | adantr | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> S e. LMod ) |
| 10 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 11 | 10 | adantr | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> T e. LMod ) |
| 12 | imassrn | |- ( F " U ) C_ ran F |
|
| 13 | 6 | frnd | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ran F C_ ( Base ` T ) ) |
| 14 | 12 13 | sstrid | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( Base ` T ) ) |
| 15 | eqid | |- ( LSubSp ` T ) = ( LSubSp ` T ) |
|
| 16 | 4 15 3 | lspcl | |- ( ( T e. LMod /\ ( F " U ) C_ ( Base ` T ) ) -> ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) |
| 17 | 11 14 16 | syl2anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) |
| 18 | eqid | |- ( LSubSp ` S ) = ( LSubSp ` S ) |
|
| 19 | 18 15 | lmhmpreima | |- ( ( F e. ( S LMHom T ) /\ ( L ` ( F " U ) ) e. ( LSubSp ` T ) ) -> ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) ) |
| 20 | 17 19 | syldan | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) ) |
| 21 | incom | |- ( dom F i^i U ) = ( U i^i dom F ) |
|
| 22 | simpr | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ V ) |
|
| 23 | 6 | fdmd | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> dom F = V ) |
| 24 | 22 23 | sseqtrrd | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ dom F ) |
| 25 | dfss2 | |- ( U C_ dom F <-> ( U i^i dom F ) = U ) |
|
| 26 | 24 25 | sylib | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( U i^i dom F ) = U ) |
| 27 | 21 26 | eqtr2id | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U = ( dom F i^i U ) ) |
| 28 | dminss | |- ( dom F i^i U ) C_ ( `' F " ( F " U ) ) |
|
| 29 | 27 28 | eqsstrdi | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( `' F " ( F " U ) ) ) |
| 30 | 4 3 | lspssid | |- ( ( T e. LMod /\ ( F " U ) C_ ( Base ` T ) ) -> ( F " U ) C_ ( L ` ( F " U ) ) ) |
| 31 | 11 14 30 | syl2anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( L ` ( F " U ) ) ) |
| 32 | imass2 | |- ( ( F " U ) C_ ( L ` ( F " U ) ) -> ( `' F " ( F " U ) ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( `' F " ( F " U ) ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
| 34 | 29 33 | sstrd | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( `' F " ( L ` ( F " U ) ) ) ) |
| 35 | 18 2 | lspssp | |- ( ( S e. LMod /\ ( `' F " ( L ` ( F " U ) ) ) e. ( LSubSp ` S ) /\ U C_ ( `' F " ( L ` ( F " U ) ) ) ) -> ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
| 36 | 9 20 34 35 | syl3anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) |
| 37 | funimass2 | |- ( ( Fun F /\ ( K ` U ) C_ ( `' F " ( L ` ( F " U ) ) ) ) -> ( F " ( K ` U ) ) C_ ( L ` ( F " U ) ) ) |
|
| 38 | 7 36 37 | syl2anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) C_ ( L ` ( F " U ) ) ) |
| 39 | 1 18 2 | lspcl | |- ( ( S e. LMod /\ U C_ V ) -> ( K ` U ) e. ( LSubSp ` S ) ) |
| 40 | 9 22 39 | syl2anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( K ` U ) e. ( LSubSp ` S ) ) |
| 41 | 18 15 | lmhmima | |- ( ( F e. ( S LMHom T ) /\ ( K ` U ) e. ( LSubSp ` S ) ) -> ( F " ( K ` U ) ) e. ( LSubSp ` T ) ) |
| 42 | 40 41 | syldan | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) e. ( LSubSp ` T ) ) |
| 43 | 1 2 | lspssid | |- ( ( S e. LMod /\ U C_ V ) -> U C_ ( K ` U ) ) |
| 44 | 9 22 43 | syl2anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> U C_ ( K ` U ) ) |
| 45 | imass2 | |- ( U C_ ( K ` U ) -> ( F " U ) C_ ( F " ( K ` U ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " U ) C_ ( F " ( K ` U ) ) ) |
| 47 | 15 3 | lspssp | |- ( ( T e. LMod /\ ( F " ( K ` U ) ) e. ( LSubSp ` T ) /\ ( F " U ) C_ ( F " ( K ` U ) ) ) -> ( L ` ( F " U ) ) C_ ( F " ( K ` U ) ) ) |
| 48 | 11 42 46 47 | syl3anc | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( L ` ( F " U ) ) C_ ( F " ( K ` U ) ) ) |
| 49 | 38 48 | eqssd | |- ( ( F e. ( S LMHom T ) /\ U C_ V ) -> ( F " ( K ` U ) ) = ( L ` ( F " U ) ) ) |