This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmflf.1 | |- Z = ( ZZ>= ` M ) |
|
| lmflf.2 | |- L = ( Z filGen ( ZZ>= " Z ) ) |
||
| Assertion | lmflf | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( F ( ~~>t ` J ) P <-> P e. ( ( J fLimf L ) ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmflf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | lmflf.2 | |- L = ( Z filGen ( ZZ>= " Z ) ) |
|
| 3 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 4 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 5 | 3 4 | ax-mp | |- ZZ>= Fn ZZ |
| 6 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 7 | 1 6 | eqsstri | |- Z C_ ZZ |
| 8 | imaeq2 | |- ( y = ( ZZ>= ` j ) -> ( F " y ) = ( F " ( ZZ>= ` j ) ) ) |
|
| 9 | 8 | sseq1d | |- ( y = ( ZZ>= ` j ) -> ( ( F " y ) C_ x <-> ( F " ( ZZ>= ` j ) ) C_ x ) ) |
| 10 | 9 | rexima | |- ( ( ZZ>= Fn ZZ /\ Z C_ ZZ ) -> ( E. y e. ( ZZ>= " Z ) ( F " y ) C_ x <-> E. j e. Z ( F " ( ZZ>= ` j ) ) C_ x ) ) |
| 11 | 5 7 10 | mp2an | |- ( E. y e. ( ZZ>= " Z ) ( F " y ) C_ x <-> E. j e. Z ( F " ( ZZ>= ` j ) ) C_ x ) |
| 12 | simpl3 | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> F : Z --> X ) |
|
| 13 | 12 | ffund | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> Fun F ) |
| 14 | uzss | |- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
|
| 15 | 14 1 | eleq2s | |- ( j e. Z -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
| 16 | 15 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
| 17 | 12 | fdmd | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> dom F = Z ) |
| 18 | 17 1 | eqtrdi | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> dom F = ( ZZ>= ` M ) ) |
| 19 | 16 18 | sseqtrrd | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( ZZ>= ` j ) C_ dom F ) |
| 20 | funimass4 | |- ( ( Fun F /\ ( ZZ>= ` j ) C_ dom F ) -> ( ( F " ( ZZ>= ` j ) ) C_ x <-> A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) ) |
|
| 21 | 13 19 20 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( ( F " ( ZZ>= ` j ) ) C_ x <-> A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) ) |
| 22 | 21 | rexbidva | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( E. j e. Z ( F " ( ZZ>= ` j ) ) C_ x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) ) |
| 23 | 11 22 | bitr2id | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. x <-> E. y e. ( ZZ>= " Z ) ( F " y ) C_ x ) ) |
| 24 | 23 | imbi2d | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( ( P e. x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) <-> ( P e. x -> E. y e. ( ZZ>= " Z ) ( F " y ) C_ x ) ) ) |
| 25 | 24 | ralbidv | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( A. x e. J ( P e. x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) <-> A. x e. J ( P e. x -> E. y e. ( ZZ>= " Z ) ( F " y ) C_ x ) ) ) |
| 26 | 25 | anbi2d | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( ( P e. X /\ A. x e. J ( P e. x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) ) <-> ( P e. X /\ A. x e. J ( P e. x -> E. y e. ( ZZ>= " Z ) ( F " y ) C_ x ) ) ) ) |
| 27 | simp1 | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> J e. ( TopOn ` X ) ) |
|
| 28 | simp2 | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> M e. ZZ ) |
|
| 29 | simp3 | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> F : Z --> X ) |
|
| 30 | eqidd | |- ( ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 31 | 27 1 28 29 30 | lmbrf | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. J ( P e. x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. x ) ) ) ) |
| 32 | 1 | uzfbas | |- ( M e. ZZ -> ( ZZ>= " Z ) e. ( fBas ` Z ) ) |
| 33 | 2 | flffbas | |- ( ( J e. ( TopOn ` X ) /\ ( ZZ>= " Z ) e. ( fBas ` Z ) /\ F : Z --> X ) -> ( P e. ( ( J fLimf L ) ` F ) <-> ( P e. X /\ A. x e. J ( P e. x -> E. y e. ( ZZ>= " Z ) ( F " y ) C_ x ) ) ) ) |
| 34 | 32 33 | syl3an2 | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( P e. ( ( J fLimf L ) ` F ) <-> ( P e. X /\ A. x e. J ( P e. x -> E. y e. ( ZZ>= " Z ) ( F " y ) C_ x ) ) ) ) |
| 35 | 26 31 34 | 3bitr4d | |- ( ( J e. ( TopOn ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( F ( ~~>t ` J ) P <-> P e. ( ( J fLimf L ) ` F ) ) ) |