This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a periodic function with period T , the limit doesn't change if we shift the limiting point by T . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcperiod.f | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| limcperiod.assc | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limcperiod.3 | ⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) | ||
| limcperiod.t | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) | ||
| limcperiod.b | ⊢ 𝐵 = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } | ||
| limcperiod.bss | ⊢ ( 𝜑 → 𝐵 ⊆ dom 𝐹 ) | ||
| limcperiod.fper | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) | ||
| limcperiod.clim | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ) | ||
| Assertion | limcperiod | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ ( 𝐷 + 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcperiod.f | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 2 | limcperiod.assc | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | limcperiod.3 | ⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) | |
| 4 | limcperiod.t | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) | |
| 5 | limcperiod.b | ⊢ 𝐵 = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } | |
| 6 | limcperiod.bss | ⊢ ( 𝜑 → 𝐵 ⊆ dom 𝐹 ) | |
| 7 | limcperiod.fper | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 8 | limcperiod.clim | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ) | |
| 9 | limccl | ⊢ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ⊆ ℂ | |
| 10 | 9 8 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 11 | 1 3 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ℂ ) |
| 12 | limcrcl | ⊢ ( 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) | |
| 13 | 8 12 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
| 14 | 13 | simp3d | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 15 | 11 2 14 | ellimc3 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ) ) |
| 16 | 8 15 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 17 | 16 | simprd | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 18 | 17 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 19 | simpl1l | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝜑 ) | |
| 20 | 19 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → 𝜑 ) |
| 21 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → 𝑏 ∈ 𝐵 ) | |
| 22 | id | ⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝐵 ) | |
| 23 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 𝑇 ) = ( 𝑧 + 𝑇 ) ) | |
| 24 | 23 | eqeq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = ( 𝑦 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 26 | eqeq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑤 = ( 𝑧 + 𝑇 ) ) ) | |
| 27 | 26 | rexbidv | ⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) ) ) |
| 28 | 25 27 | bitrid | ⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) ) ) |
| 29 | 28 | cbvrabv | ⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } |
| 30 | 5 29 | eqtri | ⊢ 𝐵 = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } |
| 31 | 22 30 | eleqtrdi | ⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 32 | eqeq1 | ⊢ ( 𝑤 = 𝑏 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑏 = ( 𝑧 + 𝑇 ) ) ) | |
| 33 | 32 | rexbidv | ⊢ ( 𝑤 = 𝑏 → ( ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝑏 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } ↔ ( 𝑏 ∈ ℂ ∧ ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 35 | 31 34 | sylib | ⊢ ( 𝑏 ∈ 𝐵 → ( 𝑏 ∈ ℂ ∧ ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 36 | 35 | simprd | ⊢ ( 𝑏 ∈ 𝐵 → ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) |
| 38 | oveq1 | ⊢ ( 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) = ( ( 𝑧 + 𝑇 ) − 𝑇 ) ) | |
| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( 𝑏 − 𝑇 ) = ( ( 𝑧 + 𝑇 ) − 𝑇 ) ) |
| 40 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℂ ) |
| 41 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑇 ∈ ℂ ) |
| 42 | 40 41 | pncand | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 + 𝑇 ) − 𝑇 ) = 𝑧 ) |
| 43 | 42 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( ( 𝑧 + 𝑇 ) − 𝑇 ) = 𝑧 ) |
| 44 | 39 43 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( 𝑏 − 𝑇 ) = 𝑧 ) |
| 45 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → 𝑧 ∈ 𝐴 ) | |
| 46 | 44 45 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) |
| 47 | 46 | 3exp | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 → ( 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐴 → ( 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) ) ) |
| 49 | 48 | rexlimdv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) ) |
| 50 | 37 49 | mpd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) |
| 51 | 5 | ssrab3 | ⊢ 𝐵 ⊆ ℂ |
| 52 | 51 | a1i | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 53 | 52 | sselda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℂ ) |
| 54 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑇 ∈ ℂ ) |
| 55 | 53 54 | npcand | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 − 𝑇 ) + 𝑇 ) = 𝑏 ) |
| 56 | 55 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 = ( ( 𝑏 − 𝑇 ) + 𝑇 ) ) |
| 57 | oveq1 | ⊢ ( 𝑥 = ( 𝑏 − 𝑇 ) → ( 𝑥 + 𝑇 ) = ( ( 𝑏 − 𝑇 ) + 𝑇 ) ) | |
| 58 | 57 | rspceeqv | ⊢ ( ( ( 𝑏 − 𝑇 ) ∈ 𝐴 ∧ 𝑏 = ( ( 𝑏 − 𝑇 ) + 𝑇 ) ) → ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 59 | 50 56 58 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 60 | 20 21 59 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 61 | nfv | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) | |
| 62 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } | |
| 63 | 5 62 | nfcxfr | ⊢ Ⅎ 𝑥 𝐵 |
| 64 | 63 | nfcri | ⊢ Ⅎ 𝑥 𝑏 ∈ 𝐵 |
| 65 | 61 64 | nfan | ⊢ Ⅎ 𝑥 ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) |
| 66 | nfv | ⊢ Ⅎ 𝑥 ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) | |
| 67 | 65 66 | nfan | ⊢ Ⅎ 𝑥 ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) |
| 68 | nfcv | ⊢ Ⅎ 𝑥 abs | |
| 69 | nfcv | ⊢ Ⅎ 𝑥 𝐹 | |
| 70 | 69 63 | nfres | ⊢ Ⅎ 𝑥 ( 𝐹 ↾ 𝐵 ) |
| 71 | nfcv | ⊢ Ⅎ 𝑥 𝑏 | |
| 72 | 70 71 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) |
| 73 | nfcv | ⊢ Ⅎ 𝑥 − | |
| 74 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 75 | 72 73 74 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) |
| 76 | 68 75 | nffv | ⊢ Ⅎ 𝑥 ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) |
| 77 | nfcv | ⊢ Ⅎ 𝑥 < | |
| 78 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 79 | 76 77 78 | nfbr | ⊢ Ⅎ 𝑥 ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 |
| 80 | simp3 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑏 = ( 𝑥 + 𝑇 ) ) | |
| 81 | 80 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
| 82 | 21 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑏 ∈ 𝐵 ) |
| 83 | 80 82 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑥 + 𝑇 ) ∈ 𝐵 ) |
| 84 | 83 | fvresd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 85 | 20 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝜑 ) |
| 86 | simp2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑥 ∈ 𝐴 ) | |
| 87 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 88 | 87 | anbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 89 | fvoveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) ) | |
| 90 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 91 | 89 90 | eqeq12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 92 | 88 91 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 93 | 92 7 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 94 | 85 86 93 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 95 | 86 | fvresd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 96 | 94 95 | eqtr4d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 97 | 81 84 96 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 98 | 97 | fvoveq1d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) = ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) ) |
| 99 | simpll3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) | |
| 100 | 99 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 101 | 100 86 | jca | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 102 | simp1rl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑏 ≠ ( 𝐷 + 𝑇 ) ) | |
| 103 | 102 | neneqd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ¬ 𝑏 = ( 𝐷 + 𝑇 ) ) |
| 104 | oveq1 | ⊢ ( 𝑥 = 𝐷 → ( 𝑥 + 𝑇 ) = ( 𝐷 + 𝑇 ) ) | |
| 105 | 80 104 | sylan9eq | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) ∧ 𝑥 = 𝐷 ) → 𝑏 = ( 𝐷 + 𝑇 ) ) |
| 106 | 103 105 | mtand | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ¬ 𝑥 = 𝐷 ) |
| 107 | 106 | neqned | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑥 ≠ 𝐷 ) |
| 108 | 80 | oveq1d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑏 − ( 𝐷 + 𝑇 ) ) = ( ( 𝑥 + 𝑇 ) − ( 𝐷 + 𝑇 ) ) ) |
| 109 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
| 110 | 85 86 109 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑥 ∈ ℂ ) |
| 111 | 85 14 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝐷 ∈ ℂ ) |
| 112 | 85 4 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑇 ∈ ℂ ) |
| 113 | 110 111 112 | pnpcan2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝑥 + 𝑇 ) − ( 𝐷 + 𝑇 ) ) = ( 𝑥 − 𝐷 ) ) |
| 114 | 108 113 | eqtr2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑥 − 𝐷 ) = ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) |
| 115 | 114 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( 𝑥 − 𝐷 ) ) = ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) ) |
| 116 | simp1rr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) | |
| 117 | 115 116 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) |
| 118 | 107 117 | jca | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) ) |
| 119 | neeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 𝐷 ↔ 𝑥 ≠ 𝐷 ) ) | |
| 120 | fvoveq1 | ⊢ ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦 − 𝐷 ) ) = ( abs ‘ ( 𝑥 − 𝐷 ) ) ) | |
| 121 | 120 | breq1d | ⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) ) |
| 122 | 119 121 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) ↔ ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) ) ) |
| 123 | 122 | imbrov2fvoveq | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ↔ ( ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 124 | 123 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) < 𝑤 ) ) |
| 125 | 101 118 124 | sylc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) < 𝑤 ) |
| 126 | 98 125 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) |
| 127 | 126 | 3exp | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑏 = ( 𝑥 + 𝑇 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 128 | 67 79 127 | rexlimd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 129 | 60 128 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) |
| 130 | 129 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 131 | 130 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) → ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 132 | 131 | 3exp | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 𝑧 ∈ ℝ+ → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) → ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) ) |
| 133 | 132 | reximdvai | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 134 | 18 133 | mpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 135 | 134 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 136 | 1 6 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
| 137 | 14 4 | addcld | ⊢ ( 𝜑 → ( 𝐷 + 𝑇 ) ∈ ℂ ) |
| 138 | 136 52 137 | ellimc3 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ ( 𝐷 + 𝑇 ) ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) ) |
| 139 | 10 135 138 | mpbir2and | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ ( 𝐷 + 𝑇 ) ) ) |