This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a periodic function with period T , the limit doesn't change if we shift the limiting point by T . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcperiod.f | |- ( ph -> F : dom F --> CC ) |
|
| limcperiod.assc | |- ( ph -> A C_ CC ) |
||
| limcperiod.3 | |- ( ph -> A C_ dom F ) |
||
| limcperiod.t | |- ( ph -> T e. CC ) |
||
| limcperiod.b | |- B = { x e. CC | E. y e. A x = ( y + T ) } |
||
| limcperiod.bss | |- ( ph -> B C_ dom F ) |
||
| limcperiod.fper | |- ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
||
| limcperiod.clim | |- ( ph -> C e. ( ( F |` A ) limCC D ) ) |
||
| Assertion | limcperiod | |- ( ph -> C e. ( ( F |` B ) limCC ( D + T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcperiod.f | |- ( ph -> F : dom F --> CC ) |
|
| 2 | limcperiod.assc | |- ( ph -> A C_ CC ) |
|
| 3 | limcperiod.3 | |- ( ph -> A C_ dom F ) |
|
| 4 | limcperiod.t | |- ( ph -> T e. CC ) |
|
| 5 | limcperiod.b | |- B = { x e. CC | E. y e. A x = ( y + T ) } |
|
| 6 | limcperiod.bss | |- ( ph -> B C_ dom F ) |
|
| 7 | limcperiod.fper | |- ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
|
| 8 | limcperiod.clim | |- ( ph -> C e. ( ( F |` A ) limCC D ) ) |
|
| 9 | limccl | |- ( ( F |` A ) limCC D ) C_ CC |
|
| 10 | 9 8 | sselid | |- ( ph -> C e. CC ) |
| 11 | 1 3 | fssresd | |- ( ph -> ( F |` A ) : A --> CC ) |
| 12 | limcrcl | |- ( C e. ( ( F |` A ) limCC D ) -> ( ( F |` A ) : dom ( F |` A ) --> CC /\ dom ( F |` A ) C_ CC /\ D e. CC ) ) |
|
| 13 | 8 12 | syl | |- ( ph -> ( ( F |` A ) : dom ( F |` A ) --> CC /\ dom ( F |` A ) C_ CC /\ D e. CC ) ) |
| 14 | 13 | simp3d | |- ( ph -> D e. CC ) |
| 15 | 11 2 14 | ellimc3 | |- ( ph -> ( C e. ( ( F |` A ) limCC D ) <-> ( C e. CC /\ A. w e. RR+ E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) ) ) |
| 16 | 8 15 | mpbid | |- ( ph -> ( C e. CC /\ A. w e. RR+ E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) ) |
| 17 | 16 | simprd | |- ( ph -> A. w e. RR+ E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 18 | 17 | r19.21bi | |- ( ( ph /\ w e. RR+ ) -> E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 19 | simpl1l | |- ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) -> ph ) |
|
| 20 | 19 | adantr | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ph ) |
| 21 | simplr | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> b e. B ) |
|
| 22 | id | |- ( b e. B -> b e. B ) |
|
| 23 | oveq1 | |- ( y = z -> ( y + T ) = ( z + T ) ) |
|
| 24 | 23 | eqeq2d | |- ( y = z -> ( x = ( y + T ) <-> x = ( z + T ) ) ) |
| 25 | 24 | cbvrexvw | |- ( E. y e. A x = ( y + T ) <-> E. z e. A x = ( z + T ) ) |
| 26 | eqeq1 | |- ( x = w -> ( x = ( z + T ) <-> w = ( z + T ) ) ) |
|
| 27 | 26 | rexbidv | |- ( x = w -> ( E. z e. A x = ( z + T ) <-> E. z e. A w = ( z + T ) ) ) |
| 28 | 25 27 | bitrid | |- ( x = w -> ( E. y e. A x = ( y + T ) <-> E. z e. A w = ( z + T ) ) ) |
| 29 | 28 | cbvrabv | |- { x e. CC | E. y e. A x = ( y + T ) } = { w e. CC | E. z e. A w = ( z + T ) } |
| 30 | 5 29 | eqtri | |- B = { w e. CC | E. z e. A w = ( z + T ) } |
| 31 | 22 30 | eleqtrdi | |- ( b e. B -> b e. { w e. CC | E. z e. A w = ( z + T ) } ) |
| 32 | eqeq1 | |- ( w = b -> ( w = ( z + T ) <-> b = ( z + T ) ) ) |
|
| 33 | 32 | rexbidv | |- ( w = b -> ( E. z e. A w = ( z + T ) <-> E. z e. A b = ( z + T ) ) ) |
| 34 | 33 | elrab | |- ( b e. { w e. CC | E. z e. A w = ( z + T ) } <-> ( b e. CC /\ E. z e. A b = ( z + T ) ) ) |
| 35 | 31 34 | sylib | |- ( b e. B -> ( b e. CC /\ E. z e. A b = ( z + T ) ) ) |
| 36 | 35 | simprd | |- ( b e. B -> E. z e. A b = ( z + T ) ) |
| 37 | 36 | adantl | |- ( ( ph /\ b e. B ) -> E. z e. A b = ( z + T ) ) |
| 38 | oveq1 | |- ( b = ( z + T ) -> ( b - T ) = ( ( z + T ) - T ) ) |
|
| 39 | 38 | 3ad2ant3 | |- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( b - T ) = ( ( z + T ) - T ) ) |
| 40 | 2 | sselda | |- ( ( ph /\ z e. A ) -> z e. CC ) |
| 41 | 4 | adantr | |- ( ( ph /\ z e. A ) -> T e. CC ) |
| 42 | 40 41 | pncand | |- ( ( ph /\ z e. A ) -> ( ( z + T ) - T ) = z ) |
| 43 | 42 | 3adant3 | |- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( ( z + T ) - T ) = z ) |
| 44 | 39 43 | eqtrd | |- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( b - T ) = z ) |
| 45 | simp2 | |- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> z e. A ) |
|
| 46 | 44 45 | eqeltrd | |- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( b - T ) e. A ) |
| 47 | 46 | 3exp | |- ( ph -> ( z e. A -> ( b = ( z + T ) -> ( b - T ) e. A ) ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ b e. B ) -> ( z e. A -> ( b = ( z + T ) -> ( b - T ) e. A ) ) ) |
| 49 | 48 | rexlimdv | |- ( ( ph /\ b e. B ) -> ( E. z e. A b = ( z + T ) -> ( b - T ) e. A ) ) |
| 50 | 37 49 | mpd | |- ( ( ph /\ b e. B ) -> ( b - T ) e. A ) |
| 51 | 5 | ssrab3 | |- B C_ CC |
| 52 | 51 | a1i | |- ( ph -> B C_ CC ) |
| 53 | 52 | sselda | |- ( ( ph /\ b e. B ) -> b e. CC ) |
| 54 | 4 | adantr | |- ( ( ph /\ b e. B ) -> T e. CC ) |
| 55 | 53 54 | npcand | |- ( ( ph /\ b e. B ) -> ( ( b - T ) + T ) = b ) |
| 56 | 55 | eqcomd | |- ( ( ph /\ b e. B ) -> b = ( ( b - T ) + T ) ) |
| 57 | oveq1 | |- ( x = ( b - T ) -> ( x + T ) = ( ( b - T ) + T ) ) |
|
| 58 | 57 | rspceeqv | |- ( ( ( b - T ) e. A /\ b = ( ( b - T ) + T ) ) -> E. x e. A b = ( x + T ) ) |
| 59 | 50 56 58 | syl2anc | |- ( ( ph /\ b e. B ) -> E. x e. A b = ( x + T ) ) |
| 60 | 20 21 59 | syl2anc | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> E. x e. A b = ( x + T ) ) |
| 61 | nfv | |- F/ x ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
|
| 62 | nfrab1 | |- F/_ x { x e. CC | E. y e. A x = ( y + T ) } |
|
| 63 | 5 62 | nfcxfr | |- F/_ x B |
| 64 | 63 | nfcri | |- F/ x b e. B |
| 65 | 61 64 | nfan | |- F/ x ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) |
| 66 | nfv | |- F/ x ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) |
|
| 67 | 65 66 | nfan | |- F/ x ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) |
| 68 | nfcv | |- F/_ x abs |
|
| 69 | nfcv | |- F/_ x F |
|
| 70 | 69 63 | nfres | |- F/_ x ( F |` B ) |
| 71 | nfcv | |- F/_ x b |
|
| 72 | 70 71 | nffv | |- F/_ x ( ( F |` B ) ` b ) |
| 73 | nfcv | |- F/_ x - |
|
| 74 | nfcv | |- F/_ x C |
|
| 75 | 72 73 74 | nfov | |- F/_ x ( ( ( F |` B ) ` b ) - C ) |
| 76 | 68 75 | nffv | |- F/_ x ( abs ` ( ( ( F |` B ) ` b ) - C ) ) |
| 77 | nfcv | |- F/_ x < |
|
| 78 | nfcv | |- F/_ x w |
|
| 79 | 76 77 78 | nfbr | |- F/ x ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w |
| 80 | simp3 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> b = ( x + T ) ) |
|
| 81 | 80 | fveq2d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` B ) ` b ) = ( ( F |` B ) ` ( x + T ) ) ) |
| 82 | 21 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> b e. B ) |
| 83 | 80 82 | eqeltrrd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( x + T ) e. B ) |
| 84 | 83 | fvresd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` B ) ` ( x + T ) ) = ( F ` ( x + T ) ) ) |
| 85 | 20 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ph ) |
| 86 | simp2 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> x e. A ) |
|
| 87 | eleq1w | |- ( y = x -> ( y e. A <-> x e. A ) ) |
|
| 88 | 87 | anbi2d | |- ( y = x -> ( ( ph /\ y e. A ) <-> ( ph /\ x e. A ) ) ) |
| 89 | fvoveq1 | |- ( y = x -> ( F ` ( y + T ) ) = ( F ` ( x + T ) ) ) |
|
| 90 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 91 | 89 90 | eqeq12d | |- ( y = x -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( x + T ) ) = ( F ` x ) ) ) |
| 92 | 88 91 | imbi12d | |- ( y = x -> ( ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) ) ) |
| 93 | 92 7 | chvarvv | |- ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 94 | 85 86 93 | syl2anc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 95 | 86 | fvresd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 96 | 94 95 | eqtr4d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( F ` ( x + T ) ) = ( ( F |` A ) ` x ) ) |
| 97 | 81 84 96 | 3eqtrd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` B ) ` b ) = ( ( F |` A ) ` x ) ) |
| 98 | 97 | fvoveq1d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) = ( abs ` ( ( ( F |` A ) ` x ) - C ) ) ) |
| 99 | simpll3 | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
|
| 100 | 99 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 101 | 100 86 | jca | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) /\ x e. A ) ) |
| 102 | simp1rl | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> b =/= ( D + T ) ) |
|
| 103 | 102 | neneqd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> -. b = ( D + T ) ) |
| 104 | oveq1 | |- ( x = D -> ( x + T ) = ( D + T ) ) |
|
| 105 | 80 104 | sylan9eq | |- ( ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) /\ x = D ) -> b = ( D + T ) ) |
| 106 | 103 105 | mtand | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> -. x = D ) |
| 107 | 106 | neqned | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> x =/= D ) |
| 108 | 80 | oveq1d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( b - ( D + T ) ) = ( ( x + T ) - ( D + T ) ) ) |
| 109 | 2 | sselda | |- ( ( ph /\ x e. A ) -> x e. CC ) |
| 110 | 85 86 109 | syl2anc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> x e. CC ) |
| 111 | 85 14 | syl | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> D e. CC ) |
| 112 | 85 4 | syl | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> T e. CC ) |
| 113 | 110 111 112 | pnpcan2d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( x + T ) - ( D + T ) ) = ( x - D ) ) |
| 114 | 108 113 | eqtr2d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( x - D ) = ( b - ( D + T ) ) ) |
| 115 | 114 | fveq2d | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( x - D ) ) = ( abs ` ( b - ( D + T ) ) ) ) |
| 116 | simp1rr | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( b - ( D + T ) ) ) < z ) |
|
| 117 | 115 116 | eqbrtrd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( x - D ) ) < z ) |
| 118 | 107 117 | jca | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( x =/= D /\ ( abs ` ( x - D ) ) < z ) ) |
| 119 | neeq1 | |- ( y = x -> ( y =/= D <-> x =/= D ) ) |
|
| 120 | fvoveq1 | |- ( y = x -> ( abs ` ( y - D ) ) = ( abs ` ( x - D ) ) ) |
|
| 121 | 120 | breq1d | |- ( y = x -> ( ( abs ` ( y - D ) ) < z <-> ( abs ` ( x - D ) ) < z ) ) |
| 122 | 119 121 | anbi12d | |- ( y = x -> ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) <-> ( x =/= D /\ ( abs ` ( x - D ) ) < z ) ) ) |
| 123 | 122 | imbrov2fvoveq | |- ( y = x -> ( ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) <-> ( ( x =/= D /\ ( abs ` ( x - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` x ) - C ) ) < w ) ) ) |
| 124 | 123 | rspccva | |- ( ( A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) /\ x e. A ) -> ( ( x =/= D /\ ( abs ` ( x - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` x ) - C ) ) < w ) ) |
| 125 | 101 118 124 | sylc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( ( ( F |` A ) ` x ) - C ) ) < w ) |
| 126 | 98 125 | eqbrtrd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) |
| 127 | 126 | 3exp | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ( x e. A -> ( b = ( x + T ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) |
| 128 | 67 79 127 | rexlimd | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ( E. x e. A b = ( x + T ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 129 | 60 128 | mpd | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) |
| 130 | 129 | ex | |- ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) -> ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 131 | 130 | ralrimiva | |- ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) -> A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 132 | 131 | 3exp | |- ( ( ph /\ w e. RR+ ) -> ( z e. RR+ -> ( A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) -> A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) ) |
| 133 | 132 | reximdvai | |- ( ( ph /\ w e. RR+ ) -> ( E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) -> E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) |
| 134 | 18 133 | mpd | |- ( ( ph /\ w e. RR+ ) -> E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 135 | 134 | ralrimiva | |- ( ph -> A. w e. RR+ E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 136 | 1 6 | fssresd | |- ( ph -> ( F |` B ) : B --> CC ) |
| 137 | 14 4 | addcld | |- ( ph -> ( D + T ) e. CC ) |
| 138 | 136 52 137 | ellimc3 | |- ( ph -> ( C e. ( ( F |` B ) limCC ( D + T ) ) <-> ( C e. CC /\ A. w e. RR+ E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) ) |
| 139 | 10 135 138 | mpbir2and | |- ( ph -> C e. ( ( F |` B ) limCC ( D + T ) ) ) |