This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltmod.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltmod.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| ltmod.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,) 𝐴 ) ) | ||
| Assertion | ltmod | ⊢ ( 𝜑 → ( 𝐶 mod 𝐵 ) < ( 𝐴 mod 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmod.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltmod.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | ltmod.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,) 𝐴 ) ) | |
| 4 | 1 2 | modcld | ⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
| 5 | 1 4 | resubcld | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ ) |
| 6 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 7 | icossre | ⊢ ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,) 𝐴 ) ⊆ ℝ ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,) 𝐴 ) ⊆ ℝ ) |
| 9 | 8 3 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 10 | 2 | rpred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 11 | 9 2 | rerpdivcld | ⊢ ( 𝜑 → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 12 | 11 | flcld | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ∈ ℤ ) |
| 13 | 12 | zred | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ∈ ℝ ) |
| 14 | 10 13 | remulcld | ⊢ ( 𝜑 → ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ∈ ℝ ) |
| 15 | 5 | rexrd | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ* ) |
| 16 | icoltub | ⊢ ( ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,) 𝐴 ) ) → 𝐶 < 𝐴 ) | |
| 17 | 15 6 3 16 | syl3anc | ⊢ ( 𝜑 → 𝐶 < 𝐴 ) |
| 18 | 9 1 14 17 | ltsub1dd | ⊢ ( 𝜑 → ( 𝐶 − ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ) < ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ) ) |
| 19 | icossicc | ⊢ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,) 𝐴 ) ⊆ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) | |
| 20 | 19 3 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) [,] 𝐴 ) ) |
| 21 | 1 2 20 | lefldiveq | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) |
| 22 | 21 | eqcomd | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 25 | 18 24 | breqtrd | ⊢ ( 𝜑 → ( 𝐶 − ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ) < ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 26 | modval | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐶 mod 𝐵 ) = ( 𝐶 − ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ) ) | |
| 27 | 9 2 26 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 mod 𝐵 ) = ( 𝐶 − ( 𝐵 · ( ⌊ ‘ ( 𝐶 / 𝐵 ) ) ) ) ) |
| 28 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 29 | 1 2 28 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 30 | 25 27 29 | 3brtr4d | ⊢ ( 𝜑 → ( 𝐶 mod 𝐵 ) < ( 𝐴 mod 𝐵 ) ) |