This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioounsn | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 2 | iccid | ⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
| 4 | 3 | uneq2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 5 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) | |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 7 | 1 | xrleidd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐵 ) |
| 8 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 9 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 10 | xrlenlt | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) | |
| 11 | df-ioc | ⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 12 | simpl1 | ⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝑤 ∈ ℝ* ) | |
| 13 | simpl2 | ⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 14 | simprl | ⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝑤 < 𝐵 ) | |
| 15 | 12 13 14 | xrltled | ⊢ ( ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → 𝑤 ≤ 𝐵 ) |
| 16 | 15 | ex | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) |
| 17 | xrltletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝑤 ) → 𝐴 < 𝑤 ) ) | |
| 18 | 8 9 10 11 16 17 | ixxun | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 (,] 𝐵 ) ) |
| 19 | 5 1 1 6 7 18 | syl32anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 [,] 𝐵 ) ) = ( 𝐴 (,] 𝐵 ) ) |
| 20 | 4 19 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |