This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for konigth . (Contributed by Mario Carneiro, 22-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | konigth.1 | ⊢ 𝐴 ∈ V | |
| konigth.2 | ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) | ||
| konigth.3 | ⊢ 𝑃 = X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) | ||
| konigth.4 | ⊢ 𝐷 = ( 𝑖 ∈ 𝐴 ↦ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) | ||
| konigth.5 | ⊢ 𝐸 = ( 𝑖 ∈ 𝐴 ↦ ( 𝑒 ‘ 𝑖 ) ) | ||
| Assertion | konigthlem | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → 𝑆 ≺ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigth.1 | ⊢ 𝐴 ∈ V | |
| 2 | konigth.2 | ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) | |
| 3 | konigth.3 | ⊢ 𝑃 = X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) | |
| 4 | konigth.4 | ⊢ 𝐷 = ( 𝑖 ∈ 𝐴 ↦ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) | |
| 5 | konigth.5 | ⊢ 𝐸 = ( 𝑖 ∈ 𝐴 ↦ ( 𝑒 ‘ 𝑖 ) ) | |
| 6 | fvex | ⊢ ( 𝑀 ‘ 𝑖 ) ∈ V | |
| 7 | fvex | ⊢ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ∈ V | |
| 8 | eqid | ⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) = ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | |
| 9 | 7 8 | fnmpti | ⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) Fn ( 𝑀 ‘ 𝑖 ) |
| 10 | 6 | mptex | ⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ∈ V |
| 11 | 4 | fvmpt2 | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ∈ V ) → ( 𝐷 ‘ 𝑖 ) = ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) |
| 12 | 10 11 | mpan2 | ⊢ ( 𝑖 ∈ 𝐴 → ( 𝐷 ‘ 𝑖 ) = ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) |
| 13 | 12 | fneq1d | ⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) ↔ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) Fn ( 𝑀 ‘ 𝑖 ) ) ) |
| 14 | 9 13 | mpbiri | ⊢ ( 𝑖 ∈ 𝐴 → ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) ) |
| 15 | fnrndomg | ⊢ ( ( 𝑀 ‘ 𝑖 ) ∈ V → ( ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) → ran ( 𝐷 ‘ 𝑖 ) ≼ ( 𝑀 ‘ 𝑖 ) ) ) | |
| 16 | 6 14 15 | mpsyl | ⊢ ( 𝑖 ∈ 𝐴 → ran ( 𝐷 ‘ 𝑖 ) ≼ ( 𝑀 ‘ 𝑖 ) ) |
| 17 | domsdomtr | ⊢ ( ( ran ( 𝐷 ‘ 𝑖 ) ≼ ( 𝑀 ‘ 𝑖 ) ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ran ( 𝐷 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) | |
| 18 | 16 17 | sylan | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ran ( 𝐷 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) |
| 19 | sdomdif | ⊢ ( ran ( 𝐷 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ ) |
| 21 | 20 | ralimiaa | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∀ 𝑖 ∈ 𝐴 ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ ) |
| 22 | fvex | ⊢ ( 𝑁 ‘ 𝑖 ) ∈ V | |
| 23 | 22 | difexi | ⊢ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∈ V |
| 24 | 1 23 | ac6c5 | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ → ∃ 𝑒 ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ) |
| 25 | equid | ⊢ 𝑓 = 𝑓 | |
| 26 | eldifi | ⊢ ( ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑒 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) | |
| 27 | fvex | ⊢ ( 𝑒 ‘ 𝑖 ) ∈ V | |
| 28 | 5 | fvmpt2 | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑒 ‘ 𝑖 ) ∈ V ) → ( 𝐸 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
| 29 | 27 28 | mpan2 | ⊢ ( 𝑖 ∈ 𝐴 → ( 𝐸 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ↔ ( 𝑒 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
| 31 | 26 30 | imbitrrid | ⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
| 32 | 31 | ralimia | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ∀ 𝑖 ∈ 𝐴 ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) |
| 33 | 27 5 | fnmpti | ⊢ 𝐸 Fn 𝐴 |
| 34 | 32 33 | jctil | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 Fn 𝐴 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
| 35 | 1 | mptex | ⊢ ( 𝑖 ∈ 𝐴 ↦ ( 𝑒 ‘ 𝑖 ) ) ∈ V |
| 36 | 5 35 | eqeltri | ⊢ 𝐸 ∈ V |
| 37 | 36 | elixp | ⊢ ( 𝐸 ∈ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ↔ ( 𝐸 Fn 𝐴 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
| 38 | 34 37 | sylibr | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → 𝐸 ∈ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ) |
| 39 | 38 3 | eleqtrrdi | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → 𝐸 ∈ 𝑃 ) |
| 40 | foelrn | ⊢ ( ( 𝑓 : 𝑆 –onto→ 𝑃 ∧ 𝐸 ∈ 𝑃 ) → ∃ 𝑎 ∈ 𝑆 𝐸 = ( 𝑓 ‘ 𝑎 ) ) | |
| 41 | 40 | expcom | ⊢ ( 𝐸 ∈ 𝑃 → ( 𝑓 : 𝑆 –onto→ 𝑃 → ∃ 𝑎 ∈ 𝑆 𝐸 = ( 𝑓 ‘ 𝑎 ) ) ) |
| 42 | 2 | eleq2i | ⊢ ( 𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ) |
| 43 | eliun | ⊢ ( 𝑎 ∈ ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ 𝐴 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) | |
| 44 | 42 43 | bitri | ⊢ ( 𝑎 ∈ 𝑆 ↔ ∃ 𝑖 ∈ 𝐴 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) |
| 45 | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) | |
| 46 | nfv | ⊢ Ⅎ 𝑖 𝐸 = ( 𝑓 ‘ 𝑎 ) | |
| 47 | 45 46 | nfan | ⊢ Ⅎ 𝑖 ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) |
| 48 | nfv | ⊢ Ⅎ 𝑖 ¬ 𝑓 = 𝑓 | |
| 49 | 29 | ad2antrl | ⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝐸 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
| 50 | fveq1 | ⊢ ( 𝐸 = ( 𝑓 ‘ 𝑎 ) → ( 𝐸 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | |
| 51 | 12 | fveq1d | ⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) = ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) ) |
| 52 | 8 | fvmpt2 | ⊢ ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ∧ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
| 53 | 7 52 | mpan2 | ⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) → ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
| 54 | 51 53 | sylan9eq | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
| 55 | 54 | eqcomd | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) = ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) |
| 56 | 50 55 | sylan9eq | ⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝐸 ‘ 𝑖 ) = ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) |
| 57 | 49 56 | eqtr3d | ⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝑒 ‘ 𝑖 ) = ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) |
| 58 | fnfvelrn | ⊢ ( ( ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) | |
| 59 | 14 58 | sylan | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
| 60 | 59 | adantl | ⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
| 61 | 57 60 | eqeltrd | ⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
| 62 | 61 | 3adant1 | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
| 63 | simp1 | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ) | |
| 64 | simp3l | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → 𝑖 ∈ 𝐴 ) | |
| 65 | rsp | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑖 ∈ 𝐴 → ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ) ) | |
| 66 | eldifn | ⊢ ( ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ¬ ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) | |
| 67 | 65 66 | syl6 | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑖 ∈ 𝐴 → ¬ ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) ) |
| 68 | 63 64 67 | sylc | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ¬ ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
| 69 | 62 68 | pm2.21dd | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ¬ 𝑓 = 𝑓 ) |
| 70 | 69 | 3expia | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ¬ 𝑓 = 𝑓 ) ) |
| 71 | 70 | expd | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( 𝑖 ∈ 𝐴 → ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) → ¬ 𝑓 = 𝑓 ) ) ) |
| 72 | 47 48 71 | rexlimd | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( ∃ 𝑖 ∈ 𝐴 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) → ¬ 𝑓 = 𝑓 ) ) |
| 73 | 44 72 | biimtrid | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( 𝑎 ∈ 𝑆 → ¬ 𝑓 = 𝑓 ) ) |
| 74 | 73 | ex | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 = ( 𝑓 ‘ 𝑎 ) → ( 𝑎 ∈ 𝑆 → ¬ 𝑓 = 𝑓 ) ) ) |
| 75 | 74 | com23 | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑎 ∈ 𝑆 → ( 𝐸 = ( 𝑓 ‘ 𝑎 ) → ¬ 𝑓 = 𝑓 ) ) ) |
| 76 | 75 | rexlimdv | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( ∃ 𝑎 ∈ 𝑆 𝐸 = ( 𝑓 ‘ 𝑎 ) → ¬ 𝑓 = 𝑓 ) ) |
| 77 | 41 76 | syl9r | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 ∈ 𝑃 → ( 𝑓 : 𝑆 –onto→ 𝑃 → ¬ 𝑓 = 𝑓 ) ) ) |
| 78 | 39 77 | mpd | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑓 : 𝑆 –onto→ 𝑃 → ¬ 𝑓 = 𝑓 ) ) |
| 79 | 25 78 | mt2i | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ¬ 𝑓 : 𝑆 –onto→ 𝑃 ) |
| 80 | 79 | exlimiv | ⊢ ( ∃ 𝑒 ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ¬ 𝑓 : 𝑆 –onto→ 𝑃 ) |
| 81 | 21 24 80 | 3syl | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ¬ 𝑓 : 𝑆 –onto→ 𝑃 ) |
| 82 | 81 | nexdv | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ¬ ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) |
| 83 | 6 | 0dom | ⊢ ∅ ≼ ( 𝑀 ‘ 𝑖 ) |
| 84 | domsdomtr | ⊢ ( ( ∅ ≼ ( 𝑀 ‘ 𝑖 ) ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ∅ ≺ ( 𝑁 ‘ 𝑖 ) ) | |
| 85 | 83 84 | mpan | ⊢ ( ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∅ ≺ ( 𝑁 ‘ 𝑖 ) ) |
| 86 | 22 | 0sdom | ⊢ ( ∅ ≺ ( 𝑁 ‘ 𝑖 ) ↔ ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
| 87 | 85 86 | sylib | ⊢ ( ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
| 88 | 87 | ralimi | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
| 89 | 3 | neeq1i | ⊢ ( 𝑃 ≠ ∅ ↔ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
| 90 | 22 | rgenw | ⊢ ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V |
| 91 | ixpexg | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V → X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V ) | |
| 92 | 90 91 | ax-mp | ⊢ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V |
| 93 | 3 92 | eqeltri | ⊢ 𝑃 ∈ V |
| 94 | 93 | 0sdom | ⊢ ( ∅ ≺ 𝑃 ↔ 𝑃 ≠ ∅ ) |
| 95 | 1 22 | ac9 | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ↔ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
| 96 | 89 94 95 | 3bitr4i | ⊢ ( ∅ ≺ 𝑃 ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
| 97 | 88 96 | sylibr | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∅ ≺ 𝑃 ) |
| 98 | 1 6 | iunex | ⊢ ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ∈ V |
| 99 | 2 98 | eqeltri | ⊢ 𝑆 ∈ V |
| 100 | domtri | ⊢ ( ( 𝑃 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑃 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑃 ) ) | |
| 101 | 93 99 100 | mp2an | ⊢ ( 𝑃 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑃 ) |
| 102 | 101 | biimpri | ⊢ ( ¬ 𝑆 ≺ 𝑃 → 𝑃 ≼ 𝑆 ) |
| 103 | fodomr | ⊢ ( ( ∅ ≺ 𝑃 ∧ 𝑃 ≼ 𝑆 ) → ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) | |
| 104 | 97 102 103 | syl2an | ⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ∧ ¬ 𝑆 ≺ 𝑃 ) → ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) |
| 105 | 82 104 | mtand | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ¬ ¬ 𝑆 ≺ 𝑃 ) |
| 106 | 105 | notnotrd | ⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → 𝑆 ≺ 𝑃 ) |