This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of Enderton p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6c4.1 | ⊢ 𝐴 ∈ V | |
| ac6c4.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | ac9 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6c4.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6c4.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 2 | ac6c4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 4 | n0 | ⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) | |
| 5 | vex | ⊢ 𝑓 ∈ V | |
| 6 | 5 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑓 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 8 | 4 7 | bitr2i | ⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |
| 9 | 3 8 | sylib | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |
| 10 | ixpn0 | ⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) | |
| 11 | 9 10 | impbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) |