This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for konigth . (Contributed by Mario Carneiro, 22-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | konigth.1 | |- A e. _V |
|
| konigth.2 | |- S = U_ i e. A ( M ` i ) |
||
| konigth.3 | |- P = X_ i e. A ( N ` i ) |
||
| konigth.4 | |- D = ( i e. A |-> ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ) |
||
| konigth.5 | |- E = ( i e. A |-> ( e ` i ) ) |
||
| Assertion | konigthlem | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> S ~< P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigth.1 | |- A e. _V |
|
| 2 | konigth.2 | |- S = U_ i e. A ( M ` i ) |
|
| 3 | konigth.3 | |- P = X_ i e. A ( N ` i ) |
|
| 4 | konigth.4 | |- D = ( i e. A |-> ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ) |
|
| 5 | konigth.5 | |- E = ( i e. A |-> ( e ` i ) ) |
|
| 6 | fvex | |- ( M ` i ) e. _V |
|
| 7 | fvex | |- ( ( f ` a ) ` i ) e. _V |
|
| 8 | eqid | |- ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) = ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) |
|
| 9 | 7 8 | fnmpti | |- ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) Fn ( M ` i ) |
| 10 | 6 | mptex | |- ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) e. _V |
| 11 | 4 | fvmpt2 | |- ( ( i e. A /\ ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) e. _V ) -> ( D ` i ) = ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ) |
| 12 | 10 11 | mpan2 | |- ( i e. A -> ( D ` i ) = ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ) |
| 13 | 12 | fneq1d | |- ( i e. A -> ( ( D ` i ) Fn ( M ` i ) <-> ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) Fn ( M ` i ) ) ) |
| 14 | 9 13 | mpbiri | |- ( i e. A -> ( D ` i ) Fn ( M ` i ) ) |
| 15 | fnrndomg | |- ( ( M ` i ) e. _V -> ( ( D ` i ) Fn ( M ` i ) -> ran ( D ` i ) ~<_ ( M ` i ) ) ) |
|
| 16 | 6 14 15 | mpsyl | |- ( i e. A -> ran ( D ` i ) ~<_ ( M ` i ) ) |
| 17 | domsdomtr | |- ( ( ran ( D ` i ) ~<_ ( M ` i ) /\ ( M ` i ) ~< ( N ` i ) ) -> ran ( D ` i ) ~< ( N ` i ) ) |
|
| 18 | 16 17 | sylan | |- ( ( i e. A /\ ( M ` i ) ~< ( N ` i ) ) -> ran ( D ` i ) ~< ( N ` i ) ) |
| 19 | sdomdif | |- ( ran ( D ` i ) ~< ( N ` i ) -> ( ( N ` i ) \ ran ( D ` i ) ) =/= (/) ) |
|
| 20 | 18 19 | syl | |- ( ( i e. A /\ ( M ` i ) ~< ( N ` i ) ) -> ( ( N ` i ) \ ran ( D ` i ) ) =/= (/) ) |
| 21 | 20 | ralimiaa | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> A. i e. A ( ( N ` i ) \ ran ( D ` i ) ) =/= (/) ) |
| 22 | fvex | |- ( N ` i ) e. _V |
|
| 23 | 22 | difexi | |- ( ( N ` i ) \ ran ( D ` i ) ) e. _V |
| 24 | 1 23 | ac6c5 | |- ( A. i e. A ( ( N ` i ) \ ran ( D ` i ) ) =/= (/) -> E. e A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) ) |
| 25 | equid | |- f = f |
|
| 26 | eldifi | |- ( ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( e ` i ) e. ( N ` i ) ) |
|
| 27 | fvex | |- ( e ` i ) e. _V |
|
| 28 | 5 | fvmpt2 | |- ( ( i e. A /\ ( e ` i ) e. _V ) -> ( E ` i ) = ( e ` i ) ) |
| 29 | 27 28 | mpan2 | |- ( i e. A -> ( E ` i ) = ( e ` i ) ) |
| 30 | 29 | eleq1d | |- ( i e. A -> ( ( E ` i ) e. ( N ` i ) <-> ( e ` i ) e. ( N ` i ) ) ) |
| 31 | 26 30 | imbitrrid | |- ( i e. A -> ( ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( E ` i ) e. ( N ` i ) ) ) |
| 32 | 31 | ralimia | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> A. i e. A ( E ` i ) e. ( N ` i ) ) |
| 33 | 27 5 | fnmpti | |- E Fn A |
| 34 | 32 33 | jctil | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( E Fn A /\ A. i e. A ( E ` i ) e. ( N ` i ) ) ) |
| 35 | 1 | mptex | |- ( i e. A |-> ( e ` i ) ) e. _V |
| 36 | 5 35 | eqeltri | |- E e. _V |
| 37 | 36 | elixp | |- ( E e. X_ i e. A ( N ` i ) <-> ( E Fn A /\ A. i e. A ( E ` i ) e. ( N ` i ) ) ) |
| 38 | 34 37 | sylibr | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> E e. X_ i e. A ( N ` i ) ) |
| 39 | 38 3 | eleqtrrdi | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> E e. P ) |
| 40 | foelrn | |- ( ( f : S -onto-> P /\ E e. P ) -> E. a e. S E = ( f ` a ) ) |
|
| 41 | 40 | expcom | |- ( E e. P -> ( f : S -onto-> P -> E. a e. S E = ( f ` a ) ) ) |
| 42 | 2 | eleq2i | |- ( a e. S <-> a e. U_ i e. A ( M ` i ) ) |
| 43 | eliun | |- ( a e. U_ i e. A ( M ` i ) <-> E. i e. A a e. ( M ` i ) ) |
|
| 44 | 42 43 | bitri | |- ( a e. S <-> E. i e. A a e. ( M ` i ) ) |
| 45 | nfra1 | |- F/ i A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) |
|
| 46 | nfv | |- F/ i E = ( f ` a ) |
|
| 47 | 45 46 | nfan | |- F/ i ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) ) |
| 48 | nfv | |- F/ i -. f = f |
|
| 49 | 29 | ad2antrl | |- ( ( E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> ( E ` i ) = ( e ` i ) ) |
| 50 | fveq1 | |- ( E = ( f ` a ) -> ( E ` i ) = ( ( f ` a ) ` i ) ) |
|
| 51 | 12 | fveq1d | |- ( i e. A -> ( ( D ` i ) ` a ) = ( ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ` a ) ) |
| 52 | 8 | fvmpt2 | |- ( ( a e. ( M ` i ) /\ ( ( f ` a ) ` i ) e. _V ) -> ( ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ` a ) = ( ( f ` a ) ` i ) ) |
| 53 | 7 52 | mpan2 | |- ( a e. ( M ` i ) -> ( ( a e. ( M ` i ) |-> ( ( f ` a ) ` i ) ) ` a ) = ( ( f ` a ) ` i ) ) |
| 54 | 51 53 | sylan9eq | |- ( ( i e. A /\ a e. ( M ` i ) ) -> ( ( D ` i ) ` a ) = ( ( f ` a ) ` i ) ) |
| 55 | 54 | eqcomd | |- ( ( i e. A /\ a e. ( M ` i ) ) -> ( ( f ` a ) ` i ) = ( ( D ` i ) ` a ) ) |
| 56 | 50 55 | sylan9eq | |- ( ( E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> ( E ` i ) = ( ( D ` i ) ` a ) ) |
| 57 | 49 56 | eqtr3d | |- ( ( E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> ( e ` i ) = ( ( D ` i ) ` a ) ) |
| 58 | fnfvelrn | |- ( ( ( D ` i ) Fn ( M ` i ) /\ a e. ( M ` i ) ) -> ( ( D ` i ) ` a ) e. ran ( D ` i ) ) |
|
| 59 | 14 58 | sylan | |- ( ( i e. A /\ a e. ( M ` i ) ) -> ( ( D ` i ) ` a ) e. ran ( D ` i ) ) |
| 60 | 59 | adantl | |- ( ( E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> ( ( D ` i ) ` a ) e. ran ( D ` i ) ) |
| 61 | 57 60 | eqeltrd | |- ( ( E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> ( e ` i ) e. ran ( D ` i ) ) |
| 62 | 61 | 3adant1 | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> ( e ` i ) e. ran ( D ` i ) ) |
| 63 | simp1 | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) ) |
|
| 64 | simp3l | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> i e. A ) |
|
| 65 | rsp | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( i e. A -> ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) ) ) |
|
| 66 | eldifn | |- ( ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> -. ( e ` i ) e. ran ( D ` i ) ) |
|
| 67 | 65 66 | syl6 | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( i e. A -> -. ( e ` i ) e. ran ( D ` i ) ) ) |
| 68 | 63 64 67 | sylc | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> -. ( e ` i ) e. ran ( D ` i ) ) |
| 69 | 62 68 | pm2.21dd | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) /\ ( i e. A /\ a e. ( M ` i ) ) ) -> -. f = f ) |
| 70 | 69 | 3expia | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) ) -> ( ( i e. A /\ a e. ( M ` i ) ) -> -. f = f ) ) |
| 71 | 70 | expd | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) ) -> ( i e. A -> ( a e. ( M ` i ) -> -. f = f ) ) ) |
| 72 | 47 48 71 | rexlimd | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) ) -> ( E. i e. A a e. ( M ` i ) -> -. f = f ) ) |
| 73 | 44 72 | biimtrid | |- ( ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) /\ E = ( f ` a ) ) -> ( a e. S -> -. f = f ) ) |
| 74 | 73 | ex | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( E = ( f ` a ) -> ( a e. S -> -. f = f ) ) ) |
| 75 | 74 | com23 | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( a e. S -> ( E = ( f ` a ) -> -. f = f ) ) ) |
| 76 | 75 | rexlimdv | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( E. a e. S E = ( f ` a ) -> -. f = f ) ) |
| 77 | 41 76 | syl9r | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( E e. P -> ( f : S -onto-> P -> -. f = f ) ) ) |
| 78 | 39 77 | mpd | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> ( f : S -onto-> P -> -. f = f ) ) |
| 79 | 25 78 | mt2i | |- ( A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> -. f : S -onto-> P ) |
| 80 | 79 | exlimiv | |- ( E. e A. i e. A ( e ` i ) e. ( ( N ` i ) \ ran ( D ` i ) ) -> -. f : S -onto-> P ) |
| 81 | 21 24 80 | 3syl | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> -. f : S -onto-> P ) |
| 82 | 81 | nexdv | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> -. E. f f : S -onto-> P ) |
| 83 | 6 | 0dom | |- (/) ~<_ ( M ` i ) |
| 84 | domsdomtr | |- ( ( (/) ~<_ ( M ` i ) /\ ( M ` i ) ~< ( N ` i ) ) -> (/) ~< ( N ` i ) ) |
|
| 85 | 83 84 | mpan | |- ( ( M ` i ) ~< ( N ` i ) -> (/) ~< ( N ` i ) ) |
| 86 | 22 | 0sdom | |- ( (/) ~< ( N ` i ) <-> ( N ` i ) =/= (/) ) |
| 87 | 85 86 | sylib | |- ( ( M ` i ) ~< ( N ` i ) -> ( N ` i ) =/= (/) ) |
| 88 | 87 | ralimi | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> A. i e. A ( N ` i ) =/= (/) ) |
| 89 | 3 | neeq1i | |- ( P =/= (/) <-> X_ i e. A ( N ` i ) =/= (/) ) |
| 90 | 22 | rgenw | |- A. i e. A ( N ` i ) e. _V |
| 91 | ixpexg | |- ( A. i e. A ( N ` i ) e. _V -> X_ i e. A ( N ` i ) e. _V ) |
|
| 92 | 90 91 | ax-mp | |- X_ i e. A ( N ` i ) e. _V |
| 93 | 3 92 | eqeltri | |- P e. _V |
| 94 | 93 | 0sdom | |- ( (/) ~< P <-> P =/= (/) ) |
| 95 | 1 22 | ac9 | |- ( A. i e. A ( N ` i ) =/= (/) <-> X_ i e. A ( N ` i ) =/= (/) ) |
| 96 | 89 94 95 | 3bitr4i | |- ( (/) ~< P <-> A. i e. A ( N ` i ) =/= (/) ) |
| 97 | 88 96 | sylibr | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> (/) ~< P ) |
| 98 | 1 6 | iunex | |- U_ i e. A ( M ` i ) e. _V |
| 99 | 2 98 | eqeltri | |- S e. _V |
| 100 | domtri | |- ( ( P e. _V /\ S e. _V ) -> ( P ~<_ S <-> -. S ~< P ) ) |
|
| 101 | 93 99 100 | mp2an | |- ( P ~<_ S <-> -. S ~< P ) |
| 102 | 101 | biimpri | |- ( -. S ~< P -> P ~<_ S ) |
| 103 | fodomr | |- ( ( (/) ~< P /\ P ~<_ S ) -> E. f f : S -onto-> P ) |
|
| 104 | 97 102 103 | syl2an | |- ( ( A. i e. A ( M ` i ) ~< ( N ` i ) /\ -. S ~< P ) -> E. f f : S -onto-> P ) |
| 105 | 82 104 | mtand | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> -. -. S ~< P ) |
| 106 | 105 | notnotrd | |- ( A. i e. A ( M ` i ) ~< ( N ` i ) -> S ~< P ) |