This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function F : J --> K from a compactly generated space is continuous iff for all compact spaces z and continuous g : z --> J , the composite F o. g : z --> K is continuous. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgencn2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgencn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) ) | |
| 2 | rncmp | ⊢ ( ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) → ( 𝐽 ↾t ran 𝑔 ) ∈ Comp ) | |
| 3 | 2 | adantl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( 𝐽 ↾t ran 𝑔 ) ∈ Comp ) |
| 4 | simprr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) | |
| 5 | eqid | ⊢ ∪ 𝑧 = ∪ 𝑧 | |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 5 6 | cnf | ⊢ ( 𝑔 ∈ ( 𝑧 Cn 𝐽 ) → 𝑔 : ∪ 𝑧 ⟶ ∪ 𝐽 ) |
| 8 | frn | ⊢ ( 𝑔 : ∪ 𝑧 ⟶ ∪ 𝐽 → ran 𝑔 ⊆ ∪ 𝐽 ) | |
| 9 | 4 7 8 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ⊆ ∪ 𝐽 ) |
| 10 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 11 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 12 | 9 11 | sseqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ⊆ 𝑋 ) |
| 13 | vex | ⊢ 𝑔 ∈ V | |
| 14 | 13 | rnex | ⊢ ran 𝑔 ∈ V |
| 15 | 14 | elpw | ⊢ ( ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔 ⊆ 𝑋 ) |
| 16 | 12 15 | sylibr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ∈ 𝒫 𝑋 ) |
| 17 | oveq2 | ⊢ ( 𝑘 = ran 𝑔 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t ran 𝑔 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑘 = ran 𝑔 → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp ↔ ( 𝐽 ↾t ran 𝑔 ) ∈ Comp ) ) |
| 19 | reseq2 | ⊢ ( 𝑘 = ran 𝑔 → ( 𝐹 ↾ 𝑘 ) = ( 𝐹 ↾ ran 𝑔 ) ) | |
| 20 | 17 | oveq1d | ⊢ ( 𝑘 = ran 𝑔 → ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) = ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) |
| 21 | 19 20 | eleq12d | ⊢ ( 𝑘 = ran 𝑔 → ( ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑘 = ran 𝑔 → ( ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ↔ ( ( 𝐽 ↾t ran 𝑔 ) ∈ Comp → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) ) |
| 23 | 22 | rspcv | ⊢ ( ran 𝑔 ∈ 𝒫 𝑋 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( ( 𝐽 ↾t ran 𝑔 ) ∈ Comp → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) ) |
| 24 | 16 23 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( ( 𝐽 ↾t ran 𝑔 ) ∈ Comp → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) ) |
| 25 | 3 24 | mpid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) |
| 26 | simplll | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 27 | ssidd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ⊆ ran 𝑔 ) | |
| 28 | cnrest2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔 ⊆ 𝑋 ) → ( 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ↔ 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ) ) | |
| 29 | 26 27 12 28 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ↔ 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ) ) |
| 30 | 4 29 | mpbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ) |
| 31 | cnco | ⊢ ( ( 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ∧ ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) | |
| 32 | 31 | ex | ⊢ ( 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 33 | 30 32 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 34 | ssid | ⊢ ran 𝑔 ⊆ ran 𝑔 | |
| 35 | cores | ⊢ ( ran 𝑔 ⊆ ran 𝑔 → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) | |
| 36 | 34 35 | ax-mp | ⊢ ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) |
| 37 | 36 | eleq1i | ⊢ ( ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ↔ ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) |
| 38 | 33 37 | imbitrdi | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) → ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 39 | 25 38 | syld | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 40 | 39 | ralrimdvva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 41 | oveq1 | ⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( 𝑧 Cn 𝐽 ) = ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) | |
| 42 | oveq1 | ⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( 𝑧 Cn 𝐾 ) = ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) | |
| 43 | 42 | eleq2d | ⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ↔ ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 44 | 41 43 | raleqbidv | ⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ↔ ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 45 | 44 | rspcv | ⊢ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 46 | elpwi | ⊢ ( 𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋 ) | |
| 47 | 46 | adantl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → 𝑘 ⊆ 𝑋 ) |
| 48 | 47 | resabs1d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ( I ↾ 𝑋 ) ↾ 𝑘 ) = ( I ↾ 𝑘 ) ) |
| 49 | idcn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 50 | 49 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 51 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 52 | 47 51 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → 𝑘 ⊆ ∪ 𝐽 ) |
| 53 | 6 | cnrest | ⊢ ( ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑘 ⊆ ∪ 𝐽 ) → ( ( I ↾ 𝑋 ) ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 54 | 50 52 53 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ( I ↾ 𝑋 ) ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 55 | 48 54 | eqeltrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( I ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 56 | coeq2 | ⊢ ( 𝑔 = ( I ↾ 𝑘 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ) | |
| 57 | 56 | eleq1d | ⊢ ( 𝑔 = ( I ↾ 𝑘 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ↔ ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 58 | 57 | rspcv | ⊢ ( ( I ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) → ( ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) → ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 59 | 55 58 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) → ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 60 | coires1 | ⊢ ( 𝐹 ∘ ( I ↾ 𝑘 ) ) = ( 𝐹 ↾ 𝑘 ) | |
| 61 | 60 | eleq1i | ⊢ ( ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) |
| 62 | 59 61 | imbitrdi | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 63 | 45 62 | syl9r | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) |
| 64 | 63 | com23 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) |
| 65 | 64 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) |
| 66 | 40 65 | impbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ↔ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 67 | 66 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) ) |
| 68 | 1 67 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) ) |