This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixxub.2 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w S B ) ) |
||
| ixxub.3 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w <_ B ) ) |
||
| ixxub.4 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A R w ) ) |
||
| ixxub.5 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A <_ w ) ) |
||
| Assertion | ixxlb | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixxub.2 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w S B ) ) |
|
| 3 | ixxub.3 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w <_ B ) ) |
|
| 4 | ixxub.4 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A R w ) ) |
|
| 5 | ixxub.5 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A <_ w ) ) |
|
| 6 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 8 | 7 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
| 9 | 8 | simp1d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w e. RR* ) |
| 10 | 9 | ex | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) -> w e. RR* ) ) |
| 11 | 10 | ssrdv | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) C_ RR* ) |
| 12 | infxrcl | |- ( ( A O B ) C_ RR* -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
|
| 13 | 11 12 | syl | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
| 14 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A e. RR* ) |
|
| 15 | simprr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w < inf ( ( A O B ) , RR* , < ) ) |
|
| 16 | 11 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( A O B ) C_ RR* ) |
| 17 | qre | |- ( w e. QQ -> w e. RR ) |
|
| 18 | 17 | rexrd | |- ( w e. QQ -> w e. RR* ) |
| 19 | 18 | ad2antlr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w e. RR* ) |
| 20 | simprl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> A < w ) |
|
| 21 | 14 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> A e. RR* ) |
| 22 | 21 19 4 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( A < w -> A R w ) ) |
| 23 | 20 22 | mpd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> A R w ) |
| 24 | 13 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
| 25 | simpll2 | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> B e. RR* ) |
|
| 26 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) =/= (/) ) |
|
| 27 | n0 | |- ( ( A O B ) =/= (/) <-> E. w w e. ( A O B ) ) |
|
| 28 | 26 27 | sylib | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> E. w w e. ( A O B ) ) |
| 29 | 13 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) e. RR* ) |
| 30 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> B e. RR* ) |
|
| 31 | infxrlb | |- ( ( ( A O B ) C_ RR* /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) <_ w ) |
|
| 32 | 11 31 | sylan | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) <_ w ) |
| 33 | 8 | simp3d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w S B ) |
| 34 | 9 30 3 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w S B -> w <_ B ) ) |
| 35 | 33 34 | mpd | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w <_ B ) |
| 36 | 29 9 30 32 35 | xrletrd | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> inf ( ( A O B ) , RR* , < ) <_ B ) |
| 37 | 28 36 | exlimddv | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) <_ B ) |
| 38 | 37 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> inf ( ( A O B ) , RR* , < ) <_ B ) |
| 39 | 19 24 25 15 38 | xrltletrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w < B ) |
| 40 | 19 25 2 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( w < B -> w S B ) ) |
| 41 | 39 40 | mpd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w S B ) |
| 42 | 7 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 43 | 19 23 41 42 | mpbir3and | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> w e. ( A O B ) ) |
| 44 | 16 43 31 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> inf ( ( A O B ) , RR* , < ) <_ w ) |
| 45 | 24 19 | xrlenltd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> ( inf ( ( A O B ) , RR* , < ) <_ w <-> -. w < inf ( ( A O B ) , RR* , < ) ) ) |
| 46 | 44 45 | mpbid | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) -> -. w < inf ( ( A O B ) , RR* , < ) ) |
| 47 | 15 46 | pm2.65da | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) -> -. ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) |
| 48 | 47 | nrexdv | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) |
| 49 | qbtwnxr | |- ( ( A e. RR* /\ inf ( ( A O B ) , RR* , < ) e. RR* /\ A < inf ( ( A O B ) , RR* , < ) ) -> E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) |
|
| 50 | 49 | 3expia | |- ( ( A e. RR* /\ inf ( ( A O B ) , RR* , < ) e. RR* ) -> ( A < inf ( ( A O B ) , RR* , < ) -> E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) ) |
| 51 | 14 13 50 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A < inf ( ( A O B ) , RR* , < ) -> E. w e. QQ ( A < w /\ w < inf ( ( A O B ) , RR* , < ) ) ) ) |
| 52 | 48 51 | mtod | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. A < inf ( ( A O B ) , RR* , < ) ) |
| 53 | 13 14 52 | xrnltled | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) <_ A ) |
| 54 | 8 | simp2d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A R w ) |
| 55 | 14 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A e. RR* ) |
| 56 | 55 9 5 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( A R w -> A <_ w ) ) |
| 57 | 54 56 | mpd | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A <_ w ) |
| 58 | 57 | ralrimiva | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A. w e. ( A O B ) A <_ w ) |
| 59 | infxrgelb | |- ( ( ( A O B ) C_ RR* /\ A e. RR* ) -> ( A <_ inf ( ( A O B ) , RR* , < ) <-> A. w e. ( A O B ) A <_ w ) ) |
|
| 60 | 11 14 59 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A <_ inf ( ( A O B ) , RR* , < ) <-> A. w e. ( A O B ) A <_ w ) ) |
| 61 | 58 60 | mpbird | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A <_ inf ( ( A O B ) , RR* , < ) ) |
| 62 | 13 14 53 61 | xrletrid | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> inf ( ( A O B ) , RR* , < ) = A ) |