This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1fi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | frnd | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
| 3 | ssfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵 ) → ran 𝐹 ∈ Fin ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 ∈ Fin ) |
| 5 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 7 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 → ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 ) | |
| 8 | f1ofo | ⊢ ( ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 → ◡ 𝐹 : ran 𝐹 –onto→ 𝐴 ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ◡ 𝐹 : ran 𝐹 –onto→ 𝐴 ) |
| 10 | fofi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ◡ 𝐹 : ran 𝐹 –onto→ 𝐴 ) → 𝐴 ∈ Fin ) | |
| 11 | 4 9 10 | syl2anc | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ Fin ) |