This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product of finitely many finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → X 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 3 | mapfi | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ Fin ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ Fin ) |
| 5 | ixpssmap2g | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) | |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 7 | 4 6 | ssfid | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → X 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |