This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that B ( x ) and D ( x ) are both possibly dependent on x .) (Contributed by Mario Carneiro, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixpfi2.1 | |- ( ph -> C e. Fin ) |
|
| ixpfi2.2 | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
||
| ixpfi2.3 | |- ( ( ph /\ x e. ( A \ C ) ) -> B C_ { D } ) |
||
| Assertion | ixpfi2 | |- ( ph -> X_ x e. A B e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpfi2.1 | |- ( ph -> C e. Fin ) |
|
| 2 | ixpfi2.2 | |- ( ( ph /\ x e. A ) -> B e. Fin ) |
|
| 3 | ixpfi2.3 | |- ( ( ph /\ x e. ( A \ C ) ) -> B C_ { D } ) |
|
| 4 | inss2 | |- ( A i^i C ) C_ C |
|
| 5 | ssfi | |- ( ( C e. Fin /\ ( A i^i C ) C_ C ) -> ( A i^i C ) e. Fin ) |
|
| 6 | 1 4 5 | sylancl | |- ( ph -> ( A i^i C ) e. Fin ) |
| 7 | inss1 | |- ( A i^i C ) C_ A |
|
| 8 | 2 | ralrimiva | |- ( ph -> A. x e. A B e. Fin ) |
| 9 | ssralv | |- ( ( A i^i C ) C_ A -> ( A. x e. A B e. Fin -> A. x e. ( A i^i C ) B e. Fin ) ) |
|
| 10 | 7 8 9 | mpsyl | |- ( ph -> A. x e. ( A i^i C ) B e. Fin ) |
| 11 | ixpfi | |- ( ( ( A i^i C ) e. Fin /\ A. x e. ( A i^i C ) B e. Fin ) -> X_ x e. ( A i^i C ) B e. Fin ) |
|
| 12 | 6 10 11 | syl2anc | |- ( ph -> X_ x e. ( A i^i C ) B e. Fin ) |
| 13 | resixp | |- ( ( ( A i^i C ) C_ A /\ f e. X_ x e. A B ) -> ( f |` ( A i^i C ) ) e. X_ x e. ( A i^i C ) B ) |
|
| 14 | 7 13 | mpan | |- ( f e. X_ x e. A B -> ( f |` ( A i^i C ) ) e. X_ x e. ( A i^i C ) B ) |
| 15 | 14 | a1i | |- ( ph -> ( f e. X_ x e. A B -> ( f |` ( A i^i C ) ) e. X_ x e. ( A i^i C ) B ) ) |
| 16 | simprl | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> f e. X_ x e. A B ) |
|
| 17 | vex | |- f e. _V |
|
| 18 | 17 | elixp | |- ( f e. X_ x e. A B <-> ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) |
| 19 | 16 18 | sylib | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) |
| 20 | 19 | simprd | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> A. x e. A ( f ` x ) e. B ) |
| 21 | simprr | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> g e. X_ x e. A B ) |
|
| 22 | vex | |- g e. _V |
|
| 23 | 22 | elixp | |- ( g e. X_ x e. A B <-> ( g Fn A /\ A. x e. A ( g ` x ) e. B ) ) |
| 24 | 21 23 | sylib | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( g Fn A /\ A. x e. A ( g ` x ) e. B ) ) |
| 25 | 24 | simprd | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> A. x e. A ( g ` x ) e. B ) |
| 26 | r19.26 | |- ( A. x e. A ( ( f ` x ) e. B /\ ( g ` x ) e. B ) <-> ( A. x e. A ( f ` x ) e. B /\ A. x e. A ( g ` x ) e. B ) ) |
|
| 27 | difss | |- ( A \ C ) C_ A |
|
| 28 | ssralv | |- ( ( A \ C ) C_ A -> ( A. x e. A ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> A. x e. ( A \ C ) ( ( f ` x ) e. B /\ ( g ` x ) e. B ) ) ) |
|
| 29 | 27 28 | ax-mp | |- ( A. x e. A ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> A. x e. ( A \ C ) ( ( f ` x ) e. B /\ ( g ` x ) e. B ) ) |
| 30 | 3 | sseld | |- ( ( ph /\ x e. ( A \ C ) ) -> ( ( f ` x ) e. B -> ( f ` x ) e. { D } ) ) |
| 31 | elsni | |- ( ( f ` x ) e. { D } -> ( f ` x ) = D ) |
|
| 32 | 30 31 | syl6 | |- ( ( ph /\ x e. ( A \ C ) ) -> ( ( f ` x ) e. B -> ( f ` x ) = D ) ) |
| 33 | 3 | sseld | |- ( ( ph /\ x e. ( A \ C ) ) -> ( ( g ` x ) e. B -> ( g ` x ) e. { D } ) ) |
| 34 | elsni | |- ( ( g ` x ) e. { D } -> ( g ` x ) = D ) |
|
| 35 | 33 34 | syl6 | |- ( ( ph /\ x e. ( A \ C ) ) -> ( ( g ` x ) e. B -> ( g ` x ) = D ) ) |
| 36 | 32 35 | anim12d | |- ( ( ph /\ x e. ( A \ C ) ) -> ( ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> ( ( f ` x ) = D /\ ( g ` x ) = D ) ) ) |
| 37 | eqtr3 | |- ( ( ( f ` x ) = D /\ ( g ` x ) = D ) -> ( f ` x ) = ( g ` x ) ) |
|
| 38 | 36 37 | syl6 | |- ( ( ph /\ x e. ( A \ C ) ) -> ( ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> ( f ` x ) = ( g ` x ) ) ) |
| 39 | 38 | ralimdva | |- ( ph -> ( A. x e. ( A \ C ) ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( A. x e. ( A \ C ) ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) |
| 41 | 29 40 | syl5 | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( A. x e. A ( ( f ` x ) e. B /\ ( g ` x ) e. B ) -> A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) |
| 42 | 26 41 | biimtrrid | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( ( A. x e. A ( f ` x ) e. B /\ A. x e. A ( g ` x ) e. B ) -> A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) |
| 43 | 20 25 42 | mp2and | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) |
| 44 | 43 | biantrud | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( A. x e. ( A i^i C ) ( f ` x ) = ( g ` x ) <-> ( A. x e. ( A i^i C ) ( f ` x ) = ( g ` x ) /\ A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) ) |
| 45 | fvres | |- ( x e. ( A i^i C ) -> ( ( f |` ( A i^i C ) ) ` x ) = ( f ` x ) ) |
|
| 46 | fvres | |- ( x e. ( A i^i C ) -> ( ( g |` ( A i^i C ) ) ` x ) = ( g ` x ) ) |
|
| 47 | 45 46 | eqeq12d | |- ( x e. ( A i^i C ) -> ( ( ( f |` ( A i^i C ) ) ` x ) = ( ( g |` ( A i^i C ) ) ` x ) <-> ( f ` x ) = ( g ` x ) ) ) |
| 48 | 47 | ralbiia | |- ( A. x e. ( A i^i C ) ( ( f |` ( A i^i C ) ) ` x ) = ( ( g |` ( A i^i C ) ) ` x ) <-> A. x e. ( A i^i C ) ( f ` x ) = ( g ` x ) ) |
| 49 | inundif | |- ( ( A i^i C ) u. ( A \ C ) ) = A |
|
| 50 | 49 | raleqi | |- ( A. x e. ( ( A i^i C ) u. ( A \ C ) ) ( f ` x ) = ( g ` x ) <-> A. x e. A ( f ` x ) = ( g ` x ) ) |
| 51 | ralunb | |- ( A. x e. ( ( A i^i C ) u. ( A \ C ) ) ( f ` x ) = ( g ` x ) <-> ( A. x e. ( A i^i C ) ( f ` x ) = ( g ` x ) /\ A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) |
|
| 52 | 50 51 | bitr3i | |- ( A. x e. A ( f ` x ) = ( g ` x ) <-> ( A. x e. ( A i^i C ) ( f ` x ) = ( g ` x ) /\ A. x e. ( A \ C ) ( f ` x ) = ( g ` x ) ) ) |
| 53 | 44 48 52 | 3bitr4g | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( A. x e. ( A i^i C ) ( ( f |` ( A i^i C ) ) ` x ) = ( ( g |` ( A i^i C ) ) ` x ) <-> A. x e. A ( f ` x ) = ( g ` x ) ) ) |
| 54 | 19 | simpld | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> f Fn A ) |
| 55 | fnssres | |- ( ( f Fn A /\ ( A i^i C ) C_ A ) -> ( f |` ( A i^i C ) ) Fn ( A i^i C ) ) |
|
| 56 | 54 7 55 | sylancl | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( f |` ( A i^i C ) ) Fn ( A i^i C ) ) |
| 57 | 24 | simpld | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> g Fn A ) |
| 58 | fnssres | |- ( ( g Fn A /\ ( A i^i C ) C_ A ) -> ( g |` ( A i^i C ) ) Fn ( A i^i C ) ) |
|
| 59 | 57 7 58 | sylancl | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( g |` ( A i^i C ) ) Fn ( A i^i C ) ) |
| 60 | eqfnfv | |- ( ( ( f |` ( A i^i C ) ) Fn ( A i^i C ) /\ ( g |` ( A i^i C ) ) Fn ( A i^i C ) ) -> ( ( f |` ( A i^i C ) ) = ( g |` ( A i^i C ) ) <-> A. x e. ( A i^i C ) ( ( f |` ( A i^i C ) ) ` x ) = ( ( g |` ( A i^i C ) ) ` x ) ) ) |
|
| 61 | 56 59 60 | syl2anc | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( ( f |` ( A i^i C ) ) = ( g |` ( A i^i C ) ) <-> A. x e. ( A i^i C ) ( ( f |` ( A i^i C ) ) ` x ) = ( ( g |` ( A i^i C ) ) ` x ) ) ) |
| 62 | eqfnfv | |- ( ( f Fn A /\ g Fn A ) -> ( f = g <-> A. x e. A ( f ` x ) = ( g ` x ) ) ) |
|
| 63 | 54 57 62 | syl2anc | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( f = g <-> A. x e. A ( f ` x ) = ( g ` x ) ) ) |
| 64 | 53 61 63 | 3bitr4d | |- ( ( ph /\ ( f e. X_ x e. A B /\ g e. X_ x e. A B ) ) -> ( ( f |` ( A i^i C ) ) = ( g |` ( A i^i C ) ) <-> f = g ) ) |
| 65 | 64 | ex | |- ( ph -> ( ( f e. X_ x e. A B /\ g e. X_ x e. A B ) -> ( ( f |` ( A i^i C ) ) = ( g |` ( A i^i C ) ) <-> f = g ) ) ) |
| 66 | 15 65 | dom2lem | |- ( ph -> ( f e. X_ x e. A B |-> ( f |` ( A i^i C ) ) ) : X_ x e. A B -1-1-> X_ x e. ( A i^i C ) B ) |
| 67 | f1fi | |- ( ( X_ x e. ( A i^i C ) B e. Fin /\ ( f e. X_ x e. A B |-> ( f |` ( A i^i C ) ) ) : X_ x e. A B -1-1-> X_ x e. ( A i^i C ) B ) -> X_ x e. A B e. Fin ) |
|
| 68 | 12 66 67 | syl2anc | |- ( ph -> X_ x e. A B e. Fin ) |