This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The countable union of countable sets is countable (indexed union version of unictb ). (Contributed by Mario Carneiro, 18-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunctb | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → 𝐴 ≼ ω ) | |
| 3 | ctex | ⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → 𝐴 ∈ V ) |
| 5 | ovex | ⊢ ( ω ↑m 𝐵 ) ∈ V | |
| 6 | 5 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V |
| 7 | iunexg | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ V ) |
| 9 | acncc | ⊢ AC ω = V | |
| 10 | 8 9 | eleqtrrdi | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC ω ) |
| 11 | acndom | ⊢ ( 𝐴 ≼ ω → ( ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC ω → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) ) | |
| 12 | 2 10 11 | sylc | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) |
| 13 | simpr | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) | |
| 14 | omex | ⊢ ω ∈ V | |
| 15 | xpdom1g | ⊢ ( ( ω ∈ V ∧ 𝐴 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) ) | |
| 16 | 14 2 15 | sylancr | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) ) |
| 17 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 18 | domentr | ⊢ ( ( ( 𝐴 × ω ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝐴 × ω ) ≼ ω ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ω ) |
| 20 | ctex | ⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) | |
| 21 | 20 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 22 | iunexg | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) | |
| 23 | 3 21 22 | syl2an | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 24 | omelon | ⊢ ω ∈ On | |
| 25 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 26 | 24 25 | ax-mp | ⊢ ω ∈ dom card |
| 27 | numacn | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ω ∈ dom card → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 28 | 23 26 27 | mpisyl | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 29 | acndom2 | ⊢ ( ( 𝐴 × ω ) ≼ ω → ( ω ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝐴 × ω ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 30 | 19 28 29 | sylc | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 31 | 1 12 13 30 | iundomg | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × ω ) ) |
| 32 | domtr | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × ω ) ∧ ( 𝐴 × ω ) ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) | |
| 33 | 31 19 32 | syl2anc | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω ) |