This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set smaller than one with choice sequences of length A also has choice sequences of length A . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acndom2 | ⊢ ( 𝑋 ≼ 𝑌 → ( 𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( 𝑋 ≼ 𝑌 → ∃ 𝑓 𝑓 : 𝑋 –1-1→ 𝑌 ) | |
| 2 | simplr | ⊢ ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑌 ∈ AC 𝐴 ) | |
| 3 | imassrn | ⊢ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ⊆ ran 𝑓 | |
| 4 | simplll | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑓 : 𝑋 –1-1→ 𝑌 ) | |
| 5 | f1f | ⊢ ( 𝑓 : 𝑋 –1-1→ 𝑌 → 𝑓 : 𝑋 ⟶ 𝑌 ) | |
| 6 | frn | ⊢ ( 𝑓 : 𝑋 ⟶ 𝑌 → ran 𝑓 ⊆ 𝑌 ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ran 𝑓 ⊆ 𝑌 ) |
| 8 | 3 7 | sstrid | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ⊆ 𝑌 ) |
| 9 | elmapi | ⊢ ( 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑔 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑔 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 12 | 11 | eldifad | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 13 | 12 | elpwid | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ⊆ 𝑋 ) |
| 14 | f1dm | ⊢ ( 𝑓 : 𝑋 –1-1→ 𝑌 → dom 𝑓 = 𝑋 ) | |
| 15 | 4 14 | syl | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → dom 𝑓 = 𝑋 ) |
| 16 | 13 15 | sseqtrrd | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ⊆ dom 𝑓 ) |
| 17 | sseqin2 | ⊢ ( ( 𝑔 ‘ 𝑥 ) ⊆ dom 𝑓 ↔ ( dom 𝑓 ∩ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 18 | 16 17 | sylib | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝑓 ∩ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ‘ 𝑥 ) ) |
| 19 | eldifsni | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) | |
| 20 | 11 19 | syl | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 21 | 18 20 | eqnetrd | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( dom 𝑓 ∩ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ) |
| 22 | imadisj | ⊢ ( ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) = ∅ ↔ ( dom 𝑓 ∩ ( 𝑔 ‘ 𝑥 ) ) = ∅ ) | |
| 23 | 22 | necon3bii | ⊢ ( ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ↔ ( dom 𝑓 ∩ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ) |
| 24 | 21 23 | sylibr | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ) |
| 25 | 8 24 | jca | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ⊆ 𝑌 ∧ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ⊆ 𝑌 ∧ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ) ) |
| 27 | acni2 | ⊢ ( ( 𝑌 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ⊆ 𝑌 ∧ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ≠ ∅ ) ) → ∃ 𝑘 ( 𝑘 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 28 | 2 26 27 | syl2anc | ⊢ ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑘 ( 𝑘 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 29 | acnrcl | ⊢ ( 𝑌 ∈ AC 𝐴 → 𝐴 ∈ V ) | |
| 30 | 29 | ad3antlr | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → 𝐴 ∈ V ) |
| 31 | simp-4l | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝑋 –1-1→ 𝑌 ) | |
| 32 | f1f1orn | ⊢ ( 𝑓 : 𝑋 –1-1→ 𝑌 → 𝑓 : 𝑋 –1-1-onto→ ran 𝑓 ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝑋 –1-1-onto→ ran 𝑓 ) |
| 34 | simprr | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 35 | 3 34 | sselid | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( 𝑘 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 36 | f1ocnvfv2 | ⊢ ( ( 𝑓 : 𝑋 –1-1-onto→ ran 𝑓 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ran 𝑓 ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ) = ( 𝑘 ‘ 𝑥 ) ) | |
| 37 | 33 35 36 | syl2anc | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ) = ( 𝑘 ‘ 𝑥 ) ) |
| 38 | 37 34 | eqeltrd | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) |
| 39 | f1ocnv | ⊢ ( 𝑓 : 𝑋 –1-1-onto→ ran 𝑓 → ◡ 𝑓 : ran 𝑓 –1-1-onto→ 𝑋 ) | |
| 40 | f1of | ⊢ ( ◡ 𝑓 : ran 𝑓 –1-1-onto→ 𝑋 → ◡ 𝑓 : ran 𝑓 ⟶ 𝑋 ) | |
| 41 | 33 39 40 | 3syl | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ◡ 𝑓 : ran 𝑓 ⟶ 𝑋 ) |
| 42 | 41 35 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ 𝑋 ) |
| 43 | 13 | ad2ant2r | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( 𝑔 ‘ 𝑥 ) ⊆ 𝑋 ) |
| 44 | f1elima | ⊢ ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ 𝑋 ∧ ( 𝑔 ‘ 𝑥 ) ⊆ 𝑋 ) → ( ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ↔ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 45 | 31 42 43 44 | syl3anc | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ↔ ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
| 46 | 38 45 | mpbid | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 47 | 46 | expr | ⊢ ( ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) → ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
| 48 | 47 | ralimdva | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐴 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
| 49 | 48 | impr | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 50 | acnlem | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ◡ 𝑓 ‘ ( 𝑘 ‘ 𝑥 ) ) ∈ ( 𝑔 ‘ 𝑥 ) ) → ∃ ℎ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ 𝑥 ) ∈ ( 𝑔 ‘ 𝑥 ) ) | |
| 51 | 30 49 50 | syl2anc | ⊢ ( ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑘 ‘ 𝑥 ) ∈ ( 𝑓 “ ( 𝑔 ‘ 𝑥 ) ) ) ) → ∃ ℎ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ 𝑥 ) ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 52 | 28 51 | exlimddv | ⊢ ( ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ ℎ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ 𝑥 ) ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) → ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ 𝑥 ) ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 54 | vex | ⊢ 𝑓 ∈ V | |
| 55 | 54 | dmex | ⊢ dom 𝑓 ∈ V |
| 56 | 14 55 | eqeltrrdi | ⊢ ( 𝑓 : 𝑋 –1-1→ 𝑌 → 𝑋 ∈ V ) |
| 57 | isacn | ⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ 𝑥 ) ∈ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 58 | 56 29 57 | syl2an | ⊢ ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ 𝑥 ) ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
| 59 | 53 58 | mpbird | ⊢ ( ( 𝑓 : 𝑋 –1-1→ 𝑌 ∧ 𝑌 ∈ AC 𝐴 ) → 𝑋 ∈ AC 𝐴 ) |
| 60 | 59 | ex | ⊢ ( 𝑓 : 𝑋 –1-1→ 𝑌 → ( 𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴 ) ) |
| 61 | 60 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝑋 –1-1→ 𝑌 → ( 𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴 ) ) |
| 62 | 1 61 | syl | ⊢ ( 𝑋 ≼ 𝑌 → ( 𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴 ) ) |