This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ax-cc equivalent: every set has choice sets of length _om . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acncc | ⊢ AC ω = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | omex | ⊢ ω ∈ V | |
| 3 | isacn | ⊢ ( ( 𝑥 ∈ V ∧ ω ∈ V ) → ( 𝑥 ∈ AC ω ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝑥 ∈ AC ω ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 5 | axcc2 | ⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 6 | elmapi | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ) | |
| 7 | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ ω ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) ) | |
| 8 | eldifsni | ⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑓 : ω ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ ω ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
| 10 | 6 9 | sylan | ⊢ ( ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
| 11 | id | ⊢ ( ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 12 | 10 11 | syl5com | ⊢ ( ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 13 | 12 | ralimdva | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 14 | 13 | adantld | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 15 | 14 | eximdv | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ( ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑦 ∈ ω ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) → ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 16 | 5 15 | mpi | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m ω ) → ∃ 𝑔 ∀ 𝑦 ∈ ω ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 17 | 4 16 | mprgbir | ⊢ 𝑥 ∈ AC ω |
| 18 | 17 1 | 2th | ⊢ ( 𝑥 ∈ AC ω ↔ 𝑥 ∈ V ) |
| 19 | 18 | eqriv | ⊢ AC ω = V |