This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numacn | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | simpll | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑋 ∈ dom card ) | |
| 3 | elmapi | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 5 | 4 | frnd | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ran 𝑓 ⊆ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 6 | 5 | difss2d | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ran 𝑓 ⊆ 𝒫 𝑋 ) |
| 7 | sspwuni | ⊢ ( ran 𝑓 ⊆ 𝒫 𝑋 ↔ ∪ ran 𝑓 ⊆ 𝑋 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 9 | ssnum | ⊢ ( ( 𝑋 ∈ dom card ∧ ∪ ran 𝑓 ⊆ 𝑋 ) → ∪ ran 𝑓 ∈ dom card ) | |
| 10 | 2 8 9 | syl2anc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∪ ran 𝑓 ∈ dom card ) |
| 11 | ssdifin0 | ⊢ ( ran 𝑓 ⊆ ( 𝒫 𝑋 ∖ { ∅ } ) → ( ran 𝑓 ∩ { ∅ } ) = ∅ ) | |
| 12 | 5 11 | syl | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ( ran 𝑓 ∩ { ∅ } ) = ∅ ) |
| 13 | disjsn | ⊢ ( ( ran 𝑓 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ran 𝑓 ) | |
| 14 | 12 13 | sylib | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ¬ ∅ ∈ ran 𝑓 ) |
| 15 | ac5num | ⊢ ( ( ∪ ran 𝑓 ∈ dom card ∧ ¬ ∅ ∈ ran 𝑓 ) → ∃ ℎ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ ℎ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 17 | simpllr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝐴 ∈ V ) | |
| 18 | 4 | ffnd | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 Fn 𝐴 ) |
| 19 | fveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ℎ ‘ 𝑦 ) = ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 20 | id | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → 𝑦 = ( 𝑓 ‘ 𝑥 ) ) | |
| 21 | 19 20 | eleq12d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 22 | 21 | ralrn | ⊢ ( 𝑓 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 23 | 18 22 | syl | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ( ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 25 | 24 | adantrl | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 26 | acnlem | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) | |
| 27 | 17 25 26 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( ℎ : ran 𝑓 ⟶ ∪ ran 𝑓 ∧ ∀ 𝑦 ∈ ran 𝑓 ( ℎ ‘ 𝑦 ) ∈ 𝑦 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 28 | 16 27 | exlimddv | ⊢ ( ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) ∧ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 29 | 28 | ralrimiva | ⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 30 | isacn | ⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 31 | 29 30 | mpbird | ⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ∈ V ) → 𝑋 ∈ AC 𝐴 ) |
| 32 | 31 | expcom | ⊢ ( 𝐴 ∈ V → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |
| 33 | 1 32 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴 ) ) |