This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The countable union of countable sets is countable. Theorem 6Q of Enderton p. 159. See iunctb for indexed union version. (Contributed by NM, 26-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unictb | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ω ) → ∪ 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | iunctb | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝐴 𝑥 ≼ ω ) | |
| 3 | 1 2 | eqbrtrid | ⊢ ( ( 𝐴 ≼ ω ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≼ ω ) → ∪ 𝐴 ≼ ω ) |