This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgmulc2 : positive real case. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgmulc2.1 | |- ( ph -> C e. CC ) |
|
| itgmulc2.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
| itgmulc2.3 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
||
| itgmulc2.4 | |- ( ph -> C e. RR ) |
||
| itgmulc2.5 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| itgmulc2.6 | |- ( ph -> 0 <_ C ) |
||
| itgmulc2.7 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| Assertion | itgmulc2lem1 | |- ( ph -> ( C x. S. A B _d x ) = S. A ( C x. B ) _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmulc2.1 | |- ( ph -> C e. CC ) |
|
| 2 | itgmulc2.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 3 | itgmulc2.3 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 4 | itgmulc2.4 | |- ( ph -> C e. RR ) |
|
| 5 | itgmulc2.5 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 6 | itgmulc2.6 | |- ( ph -> 0 <_ C ) |
|
| 7 | itgmulc2.7 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 8 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 9 | 5 7 8 | sylanbrc | |- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
| 10 | 0e0icopnf | |- 0 e. ( 0 [,) +oo ) |
|
| 11 | 10 | a1i | |- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
| 12 | 9 11 | ifclda | |- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 14 | 13 | fmpttd | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 15 | 5 7 | iblpos | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
| 16 | 3 15 | mpbid | |- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) |
| 17 | 16 | simprd | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) |
| 18 | elrege0 | |- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
|
| 19 | 4 6 18 | sylanbrc | |- ( ph -> C e. ( 0 [,) +oo ) ) |
| 20 | 14 17 19 | itg2mulc | |- ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) |
| 21 | reex | |- RR e. _V |
|
| 22 | 21 | a1i | |- ( ph -> RR e. _V ) |
| 23 | 4 | adantr | |- ( ( ph /\ x e. RR ) -> C e. RR ) |
| 24 | fconstmpt | |- ( RR X. { C } ) = ( x e. RR |-> C ) |
|
| 25 | 24 | a1i | |- ( ph -> ( RR X. { C } ) = ( x e. RR |-> C ) ) |
| 26 | eqidd | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
|
| 27 | 22 23 13 25 26 | offval2 | |- ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) ) |
| 28 | ovif2 | |- ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , ( C x. 0 ) ) |
|
| 29 | 1 | mul01d | |- ( ph -> ( C x. 0 ) = 0 ) |
| 30 | 29 | adantr | |- ( ( ph /\ x e. RR ) -> ( C x. 0 ) = 0 ) |
| 31 | 30 | ifeq2d | |- ( ( ph /\ x e. RR ) -> if ( x e. A , ( C x. B ) , ( C x. 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) |
| 32 | 28 31 | eqtrid | |- ( ( ph /\ x e. RR ) -> ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) |
| 33 | 32 | mpteq2dva | |- ( ph -> ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) |
| 34 | 27 33 | eqtrd | |- ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) |
| 35 | 34 | fveq2d | |- ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
| 36 | 20 35 | eqtr3d | |- ( ph -> ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
| 37 | 5 3 7 | itgposval | |- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 38 | 37 | oveq2d | |- ( ph -> ( C x. S. A B _d x ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) |
| 39 | 4 | adantr | |- ( ( ph /\ x e. A ) -> C e. RR ) |
| 40 | 39 5 | remulcld | |- ( ( ph /\ x e. A ) -> ( C x. B ) e. RR ) |
| 41 | 1 2 3 | iblmulc2 | |- ( ph -> ( x e. A |-> ( C x. B ) ) e. L^1 ) |
| 42 | 6 | adantr | |- ( ( ph /\ x e. A ) -> 0 <_ C ) |
| 43 | 39 5 42 7 | mulge0d | |- ( ( ph /\ x e. A ) -> 0 <_ ( C x. B ) ) |
| 44 | 40 41 43 | itgposval | |- ( ph -> S. A ( C x. B ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
| 45 | 36 38 44 | 3eqtr4d | |- ( ph -> ( C x. S. A B _d x ) = S. A ( C x. B ) _d x ) |