This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itgmulc2 : real case. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| itgmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| itgmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgmulc2.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| itgmulc2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| Assertion | itgmulc2lem2 | ⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmulc2.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 2 | itgmulc2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | itgmulc2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 4 | itgmulc2.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 5 | itgmulc2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 7 | max0sub | ⊢ ( 𝐶 ∈ ℝ → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · 𝐵 ) = ( 𝐶 · 𝐵 ) ) |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | ifcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) | |
| 12 | 4 10 11 | sylancl | ⊢ ( 𝜑 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( 𝜑 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
| 15 | 4 | renegcld | ⊢ ( 𝜑 → - 𝐶 ∈ ℝ ) |
| 16 | ifcl | ⊢ ( ( - 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) | |
| 17 | 15 10 16 | sylancl | ⊢ ( 𝜑 → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( 𝜑 → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℂ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℂ ) |
| 20 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 21 | 14 19 20 | subdird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · 𝐵 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) |
| 22 | 9 21 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) |
| 23 | 22 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 = ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) d 𝑥 ) |
| 24 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 25 | 24 5 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ∈ ℝ ) |
| 26 | 13 2 3 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) ∈ 𝐿1 ) |
| 27 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
| 28 | 27 5 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ∈ ℝ ) |
| 29 | 18 2 3 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ∈ 𝐿1 ) |
| 30 | 25 26 28 29 | itgsub | ⊢ ( 𝜑 → ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) d 𝑥 = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 ) ) |
| 31 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) | |
| 32 | 5 10 31 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 33 | 24 32 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ ℝ ) |
| 34 | 5 | iblre | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) ) |
| 35 | 3 34 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) |
| 36 | 35 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ) |
| 37 | 13 32 36 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
| 38 | 5 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 39 | ifcl | ⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) | |
| 40 | 38 10 39 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 41 | 24 40 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ ℝ ) |
| 42 | 35 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) |
| 43 | 13 40 42 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
| 44 | 33 37 41 43 | itgsub | ⊢ ( 𝜑 → ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
| 45 | max0sub | ⊢ ( 𝐵 ∈ ℝ → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) | |
| 46 | 5 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) |
| 47 | 46 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) |
| 48 | 32 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℂ ) |
| 49 | 40 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℂ ) |
| 50 | 14 48 49 | subdid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 51 | 47 50 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 52 | 51 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 ) |
| 53 | 5 3 | itgreval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) |
| 54 | 53 | oveq2d | ⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
| 55 | 32 36 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
| 56 | 40 42 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
| 57 | 13 55 56 | subdid | ⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
| 58 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) | |
| 59 | 10 4 58 | sylancr | ⊢ ( 𝜑 → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 60 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) | |
| 61 | 10 5 60 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 62 | 13 32 36 12 32 59 61 | itgmulc2lem1 | ⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 ) |
| 63 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) | |
| 64 | 10 38 63 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 65 | 13 40 42 12 40 59 64 | itgmulc2lem1 | ⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) |
| 66 | 62 65 | oveq12d | ⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
| 67 | 54 57 66 | 3eqtrd | ⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
| 68 | 44 52 67 | 3eqtr4d | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 69 | 27 32 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ ℝ ) |
| 70 | 18 32 36 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
| 71 | 27 40 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ ℝ ) |
| 72 | 18 40 42 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
| 73 | 69 70 71 72 | itgsub | ⊢ ( 𝜑 → ∫ 𝐴 ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
| 74 | 46 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) |
| 75 | 19 48 49 | subdid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 76 | 74 75 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) = ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 77 | 76 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ∫ 𝐴 ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 ) |
| 78 | 53 | oveq2d | ⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
| 79 | 18 55 56 | subdid | ⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
| 80 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) | |
| 81 | 10 15 80 | sylancr | ⊢ ( 𝜑 → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 82 | 18 32 36 17 32 81 61 | itgmulc2lem1 | ⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 ) |
| 83 | 18 40 42 17 40 81 64 | itgmulc2lem1 | ⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) |
| 84 | 82 83 | oveq12d | ⊢ ( 𝜑 → ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
| 85 | 78 79 84 | 3eqtrd | ⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
| 86 | 73 77 85 | 3eqtr4d | ⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 87 | 68 86 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 88 | 2 3 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 89 | 13 18 88 | subdird | ⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 90 | 4 7 | syl | ⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
| 91 | 90 | oveq1d | ⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 92 | 87 89 91 | 3eqtr2d | ⊢ ( 𝜑 → ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 ) = ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 93 | 23 30 92 | 3eqtrrd | ⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 ) |