This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgge0.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| itgge0.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| itgge0.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | itgge0 | ⊢ ( 𝜑 → 0 ≤ ∫ 𝐴 𝐵 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgge0.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 2 | itgge0.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | itgge0.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 4 | itgz | ⊢ ∫ 𝐴 0 d 𝑥 = 0 | |
| 5 | fconstmpt | ⊢ ( 𝐴 × { 0 } ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) | |
| 6 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 8 | 7 2 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 9 | ibl0 | ⊢ ( 𝐴 ∈ dom vol → ( 𝐴 × { 0 } ) ∈ 𝐿1 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 0 } ) ∈ 𝐿1 ) |
| 11 | 5 10 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝐿1 ) |
| 12 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 13 | 11 1 12 2 3 | itgle | ⊢ ( 𝜑 → ∫ 𝐴 0 d 𝑥 ≤ ∫ 𝐴 𝐵 d 𝑥 ) |
| 14 | 4 13 | eqbrtrrid | ⊢ ( 𝜑 → 0 ≤ ∫ 𝐴 𝐵 d 𝑥 ) |