This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgless.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| itgless.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | ||
| itgless.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | ||
| itgless.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 0 ≤ 𝐶 ) | ||
| itgless.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | itgless | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ≤ ∫ 𝐵 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgless.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | itgless.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| 3 | itgless.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 4 | itgless.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 0 ≤ 𝐶 ) | |
| 5 | itgless.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 6 | itgss2 | ⊢ ( 𝐴 ⊆ 𝐵 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ) |
| 8 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) | |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
| 10 | 9 3 | mbfdm2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
| 11 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 12 | 11 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | ifcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℝ ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℝ ) |
| 16 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 18 | 17 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 19 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 20 | 19 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 21 | 1 2 3 5 | iblss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 22 | 20 21 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 23 | 1 10 15 18 22 | iblss2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ∈ 𝐿1 ) |
| 24 | 3 13 14 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℝ ) |
| 25 | 3 | leidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ≤ 𝐶 ) |
| 26 | breq1 | ⊢ ( 𝐶 = if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) → ( 𝐶 ≤ 𝐶 ↔ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) ) | |
| 27 | breq1 | ⊢ ( 0 = if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) → ( 0 ≤ 𝐶 ↔ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) ) | |
| 28 | 26 27 | ifboth | ⊢ ( ( 𝐶 ≤ 𝐶 ∧ 0 ≤ 𝐶 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) |
| 29 | 25 4 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ≤ 𝐶 ) |
| 30 | 23 5 24 3 29 | itgle | ⊢ ( 𝜑 → ∫ 𝐵 if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) d 𝑥 ≤ ∫ 𝐵 𝐶 d 𝑥 ) |
| 31 | 7 30 | eqbrtrd | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ≤ ∫ 𝐵 𝐶 d 𝑥 ) |