This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function analogue of negsub . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofnegsub | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f + ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐴 ∈ 𝑉 ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | 2 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 ) |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | 4 | negcli | ⊢ - 1 ∈ ℂ |
| 6 | fnconstg | ⊢ ( - 1 ∈ ℂ → ( 𝐴 × { - 1 } ) Fn 𝐴 ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐴 × { - 1 } ) Fn 𝐴 ) |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 : 𝐴 ⟶ ℂ ) | |
| 9 | 8 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 Fn 𝐴 ) |
| 10 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 11 | 7 9 1 1 10 | offn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) Fn 𝐴 ) |
| 12 | 3 9 1 1 10 | offn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐴 ) |
| 13 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 14 | 5 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → - 1 ∈ ℂ ) |
| 15 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 16 | 1 14 9 15 | ofc1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ‘ 𝑥 ) = ( - 1 · ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 18 | 17 | mulm1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · ( 𝐺 ‘ 𝑥 ) ) = - ( 𝐺 ‘ 𝑥 ) ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ‘ 𝑥 ) = - ( 𝐺 ‘ 𝑥 ) ) |
| 20 | 2 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 21 | 20 17 | negsubd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 22 | 3 9 1 1 10 13 15 | ofval | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | 21 22 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) |
| 24 | 1 3 11 12 13 19 23 | offveq | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f + ( ( 𝐴 × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |