This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1sub | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF - G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) |
|
| 2 | simpr | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) |
|
| 3 | neg1rr | |- -u 1 e. RR |
|
| 4 | 3 | a1i | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> -u 1 e. RR ) |
| 5 | 2 4 | i1fmulc | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( RR X. { -u 1 } ) oF x. G ) e. dom S.1 ) |
| 6 | 1 5 | itg1add | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) ) ) |
| 7 | 2 4 | itg1mulc | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) = ( -u 1 x. ( S.1 ` G ) ) ) |
| 8 | itg1cl | |- ( G e. dom S.1 -> ( S.1 ` G ) e. RR ) |
|
| 9 | 8 | recnd | |- ( G e. dom S.1 -> ( S.1 ` G ) e. CC ) |
| 10 | 2 9 | syl | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` G ) e. CC ) |
| 11 | 10 | mulm1d | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( -u 1 x. ( S.1 ` G ) ) = -u ( S.1 ` G ) ) |
| 12 | 7 11 | eqtrd | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) = -u ( S.1 ` G ) ) |
| 13 | 12 | oveq2d | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( S.1 ` F ) + ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + -u ( S.1 ` G ) ) ) |
| 14 | 6 13 | eqtrd | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + -u ( S.1 ` G ) ) ) |
| 15 | reex | |- RR e. _V |
|
| 16 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 17 | ax-resscn | |- RR C_ CC |
|
| 18 | fss | |- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
|
| 19 | 16 17 18 | sylancl | |- ( F e. dom S.1 -> F : RR --> CC ) |
| 20 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 21 | fss | |- ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) |
|
| 22 | 20 17 21 | sylancl | |- ( G e. dom S.1 -> G : RR --> CC ) |
| 23 | ofnegsub | |- ( ( RR e. _V /\ F : RR --> CC /\ G : RR --> CC ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
|
| 24 | 15 19 22 23 | mp3an3an | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| 25 | 24 | fveq2d | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( S.1 ` ( F oF - G ) ) ) |
| 26 | itg1cl | |- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
|
| 27 | 26 | recnd | |- ( F e. dom S.1 -> ( S.1 ` F ) e. CC ) |
| 28 | negsub | |- ( ( ( S.1 ` F ) e. CC /\ ( S.1 ` G ) e. CC ) -> ( ( S.1 ` F ) + -u ( S.1 ` G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |
|
| 29 | 27 9 28 | syl2an | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( S.1 ` F ) + -u ( S.1 ` G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |
| 30 | 14 25 29 | 3eqtr3d | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF - G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |