This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| itg10a.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| itg10a.3 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itg10a.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) | ||
| Assertion | itg10a | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | itg10a.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | itg10a.3 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 4 | itg10a.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) | |
| 5 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 7 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 9 | 8 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
| 11 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 13 | eldifsni | ⊢ ( 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑘 ≠ 0 ) | |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑘 ≠ 0 ) |
| 15 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑥 ∈ ℝ ) | |
| 16 | eldif | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 17 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑘 ) | |
| 18 | 4 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 19 | 17 18 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 𝑘 = 0 ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑘 = 0 ) ) |
| 21 | 16 20 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑘 = 0 ) ) |
| 22 | 15 21 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑘 = 0 ) ) |
| 23 | 22 | necon1ad | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → ( 𝑘 ≠ 0 → 𝑥 ∈ 𝐴 ) ) |
| 24 | 14 23 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) → 𝑥 ∈ 𝐴 ) |
| 25 | 24 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ 𝐴 ) ) |
| 26 | 12 25 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) → 𝑥 ∈ 𝐴 ) ) |
| 27 | 26 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ 𝐴 ) |
| 28 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐴 ⊆ ℝ ) |
| 29 | 27 28 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) |
| 30 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol* ‘ 𝐴 ) = 0 ) |
| 31 | ovolssnul | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) | |
| 32 | 27 28 30 31 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 33 | nulmbl | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 35 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 37 | 36 32 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = 0 ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = ( 𝑘 · 0 ) ) |
| 39 | 8 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 40 | 39 | ssdifssd | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 41 | 40 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 42 | 41 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℂ ) |
| 43 | 42 | mul01d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · 0 ) = 0 ) |
| 44 | 38 43 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = 0 ) |
| 45 | 44 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) 0 ) |
| 46 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 47 | 1 46 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 48 | difss | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 | |
| 49 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) | |
| 50 | 47 48 49 | sylancl | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 51 | 50 | olcd | ⊢ ( 𝜑 → ( ( ran 𝐹 ∖ { 0 } ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) ) |
| 52 | sumz | ⊢ ( ( ( ran 𝐹 ∖ { 0 } ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) 0 = 0 ) | |
| 53 | 51 52 | syl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) 0 = 0 ) |
| 54 | 45 53 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = 0 ) |
| 55 | 6 54 | eqtrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = 0 ) |