This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | |- ( ph -> F e. dom S.1 ) |
|
| itg10a.2 | |- ( ph -> A C_ RR ) |
||
| itg10a.3 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itg10a.4 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 ) |
||
| Assertion | itg10a | |- ( ph -> ( S.1 ` F ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | itg10a.2 | |- ( ph -> A C_ RR ) |
|
| 3 | itg10a.3 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 4 | itg10a.4 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 ) |
|
| 5 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
|
| 6 | 1 5 | syl | |- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 7 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 8 | 1 7 | syl | |- ( ph -> F : RR --> RR ) |
| 9 | 8 | ffnd | |- ( ph -> F Fn RR ) |
| 10 | 9 | adantr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR ) |
| 11 | fniniseg | |- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 13 | eldifsni | |- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
|
| 14 | 13 | ad2antlr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k =/= 0 ) |
| 15 | simprl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR ) |
|
| 16 | eldif | |- ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) |
|
| 17 | simplrr | |- ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) = k ) |
|
| 18 | 4 | ad4ant14 | |- ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 ) |
| 19 | 17 18 | eqtr3d | |- ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> k = 0 ) |
| 20 | 19 | ex | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> k = 0 ) ) |
| 21 | 16 20 | biimtrrid | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> k = 0 ) ) |
| 22 | 15 21 | mpand | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> k = 0 ) ) |
| 23 | 22 | necon1ad | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k =/= 0 -> x e. A ) ) |
| 24 | 14 23 | mpd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. A ) |
| 25 | 24 | ex | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) ) |
| 26 | 12 25 | sylbid | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) -> x e. A ) ) |
| 27 | 26 | ssrdv | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ A ) |
| 28 | 2 | adantr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A C_ RR ) |
| 29 | 27 28 | sstrd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR ) |
| 30 | 3 | adantr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol* ` A ) = 0 ) |
| 31 | ovolssnul | |- ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
|
| 32 | 27 28 30 31 | syl3anc | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
| 33 | nulmbl | |- ( ( ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) = 0 ) -> ( `' F " { k } ) e. dom vol ) |
|
| 34 | 29 32 33 | syl2anc | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol ) |
| 35 | mblvol | |- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
|
| 36 | 34 35 | syl | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 37 | 36 32 | eqtrd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = 0 ) |
| 38 | 37 | oveq2d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) ) |
| 39 | 8 | frnd | |- ( ph -> ran F C_ RR ) |
| 40 | 39 | ssdifssd | |- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 41 | 40 | sselda | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 42 | 41 | recnd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 43 | 42 | mul01d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. 0 ) = 0 ) |
| 44 | 38 43 | eqtrd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
| 45 | 44 | sumeq2dv | |- ( ph -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) 0 ) |
| 46 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 47 | 1 46 | syl | |- ( ph -> ran F e. Fin ) |
| 48 | difss | |- ( ran F \ { 0 } ) C_ ran F |
|
| 49 | ssfi | |- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
|
| 50 | 47 48 49 | sylancl | |- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
| 51 | 50 | olcd | |- ( ph -> ( ( ran F \ { 0 } ) C_ ( ZZ>= ` 0 ) \/ ( ran F \ { 0 } ) e. Fin ) ) |
| 52 | sumz | |- ( ( ( ran F \ { 0 } ) C_ ( ZZ>= ` 0 ) \/ ( ran F \ { 0 } ) e. Fin ) -> sum_ k e. ( ran F \ { 0 } ) 0 = 0 ) |
|
| 53 | 51 52 | syl | |- ( ph -> sum_ k e. ( ran F \ { 0 } ) 0 = 0 ) |
| 54 | 45 53 | eqtrd | |- ( ph -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
| 55 | 6 54 | eqtrd | |- ( ph -> ( S.1 ` F ) = 0 ) |