This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddpnf2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( +∞ +𝑒 𝐴 ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval | ⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( +∞ +𝑒 𝐴 ) = if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( +∞ +𝑒 𝐴 ) = if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) ) |
| 4 | eqid | ⊢ +∞ = +∞ | |
| 5 | 4 | iftruei | ⊢ if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) = if ( 𝐴 = -∞ , 0 , +∞ ) |
| 6 | ifnefalse | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , 0 , +∞ ) = +∞ ) | |
| 7 | 5 6 | eqtrid | ⊢ ( 𝐴 ≠ -∞ → if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) = +∞ ) |
| 8 | 3 7 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( +∞ +𝑒 𝐴 ) = +∞ ) |