This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 +𝑒 +∞ ) = if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 +∞ ) = if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) ) |
| 4 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 5 | ifnefalse | ⊢ ( +∞ ≠ -∞ → if ( +∞ = -∞ , 0 , +∞ ) = +∞ ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝐴 ≠ -∞ → if ( +∞ = -∞ , 0 , +∞ ) = +∞ ) |
| 7 | ifnefalse | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) = if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) | |
| 8 | eqid | ⊢ +∞ = +∞ | |
| 9 | 8 | iftruei | ⊢ if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) = +∞ |
| 10 | 7 9 | eqtrdi | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) = +∞ ) |
| 11 | 6 10 | ifeq12d | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) = if ( 𝐴 = +∞ , +∞ , +∞ ) ) |
| 12 | ifid | ⊢ if ( 𝐴 = +∞ , +∞ , +∞ ) = +∞ | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) = +∞ ) |
| 14 | 3 13 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |