This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubdrg.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| issubdrg.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| issubdrg.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | issubdrg | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑆 ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubdrg.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | issubdrg.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | issubdrg.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | simpllr | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 5 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 6 | 4 5 | syl | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑆 ∈ Ring ) |
| 7 | simpr | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) | |
| 8 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
| 10 | 9 | simpld | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
| 11 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 12 | 4 11 | syl | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 13 | 10 12 | eleqtrd | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 14 | 9 | simprd | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 15 | 1 2 | subrg0 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ 𝑆 ) ) |
| 16 | 4 15 | syl | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 0 = ( 0g ‘ 𝑆 ) ) |
| 17 | 14 16 | neeqtrd | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ≠ ( 0g ‘ 𝑆 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 19 | eqid | ⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 21 | 18 19 20 | drngunit | ⊢ ( 𝑆 ∈ DivRing → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) ) |
| 23 | 13 17 22 | mpbir2and | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 24 | eqid | ⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) | |
| 25 | 19 24 18 | ringinvcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 26 | 6 23 25 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 27 | 1 3 19 24 | subrginv | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 28 | 4 23 27 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 29 | 26 28 12 | 3eltr4d | ⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
| 30 | 29 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
| 31 | 5 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝑆 ∈ Ring ) |
| 32 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 33 | 1 32 19 | subrguss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Unit ‘ 𝑆 ) ⊆ ( Unit ‘ 𝑅 ) ) |
| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( Unit ‘ 𝑅 ) ) |
| 35 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 36 | 35 32 2 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) ) |
| 37 | 36 | simprbi | ⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 39 | 34 38 | sseqtrd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 40 | 18 19 | unitss | ⊢ ( Unit ‘ 𝑆 ) ⊆ ( Base ‘ 𝑆 ) |
| 41 | 11 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 42 | 40 41 | sseqtrrid | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ 𝐴 ) |
| 43 | 39 42 | ssind | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
| 44 | 35 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 45 | 44 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 46 | difin2 | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) → ( 𝐴 ∖ { 0 } ) = ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) = ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
| 48 | 43 47 | sseqtrrd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( 𝐴 ∖ { 0 } ) ) |
| 49 | 44 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 50 | simprl | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) | |
| 51 | 50 8 | sylib | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
| 52 | 51 | simpld | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 53 | 49 52 | sseldd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 54 | 51 | simprd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ≠ 0 ) |
| 55 | 35 32 2 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ 0 ) ) ) |
| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ 0 ) ) ) |
| 57 | 53 54 56 | mpbir2and | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 58 | simprr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 59 | 1 32 19 3 | subrgunit | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 60 | 59 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 61 | 57 52 58 60 | mpbir3and | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 62 | 61 | expr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) ) |
| 63 | 62 | ralimdva | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 65 | dfss3 | ⊢ ( ( 𝐴 ∖ { 0 } ) ⊆ ( Unit ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) | |
| 66 | 64 65 | sylibr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) ⊆ ( Unit ‘ 𝑆 ) ) |
| 67 | 48 66 | eqssd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) = ( 𝐴 ∖ { 0 } ) ) |
| 68 | 15 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 0 = ( 0g ‘ 𝑆 ) ) |
| 69 | 68 | sneqd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → { 0 } = { ( 0g ‘ 𝑆 ) } ) |
| 70 | 41 69 | difeq12d | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) |
| 71 | 67 70 | eqtrd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) |
| 72 | 18 19 20 | isdrng | ⊢ ( 𝑆 ∈ DivRing ↔ ( 𝑆 ∈ Ring ∧ ( Unit ‘ 𝑆 ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) ) |
| 73 | 31 71 72 | sylanbrc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝑆 ∈ DivRing ) |
| 74 | 30 73 | impbida | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑆 ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) |