This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubdrg.s | |- S = ( R |`s A ) |
|
| issubdrg.z | |- .0. = ( 0g ` R ) |
||
| issubdrg.i | |- I = ( invr ` R ) |
||
| Assertion | issubdrg | |- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( S e. DivRing <-> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubdrg.s | |- S = ( R |`s A ) |
|
| 2 | issubdrg.z | |- .0. = ( 0g ` R ) |
|
| 3 | issubdrg.i | |- I = ( invr ` R ) |
|
| 4 | simpllr | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> A e. ( SubRing ` R ) ) |
|
| 5 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 6 | 4 5 | syl | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> S e. Ring ) |
| 7 | simpr | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( A \ { .0. } ) ) |
|
| 8 | eldifsn | |- ( x e. ( A \ { .0. } ) <-> ( x e. A /\ x =/= .0. ) ) |
|
| 9 | 7 8 | sylib | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( x e. A /\ x =/= .0. ) ) |
| 10 | 9 | simpld | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. A ) |
| 11 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 12 | 4 11 | syl | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> A = ( Base ` S ) ) |
| 13 | 10 12 | eleqtrd | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( Base ` S ) ) |
| 14 | 9 | simprd | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x =/= .0. ) |
| 15 | 1 2 | subrg0 | |- ( A e. ( SubRing ` R ) -> .0. = ( 0g ` S ) ) |
| 16 | 4 15 | syl | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> .0. = ( 0g ` S ) ) |
| 17 | 14 16 | neeqtrd | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x =/= ( 0g ` S ) ) |
| 18 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 19 | eqid | |- ( Unit ` S ) = ( Unit ` S ) |
|
| 20 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 21 | 18 19 20 | drngunit | |- ( S e. DivRing -> ( x e. ( Unit ` S ) <-> ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) ) |
| 22 | 21 | ad2antlr | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) ) |
| 23 | 13 17 22 | mpbir2and | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( Unit ` S ) ) |
| 24 | eqid | |- ( invr ` S ) = ( invr ` S ) |
|
| 25 | 19 24 18 | ringinvcl | |- ( ( S e. Ring /\ x e. ( Unit ` S ) ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
| 26 | 6 23 25 | syl2anc | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
| 27 | 1 3 19 24 | subrginv | |- ( ( A e. ( SubRing ` R ) /\ x e. ( Unit ` S ) ) -> ( I ` x ) = ( ( invr ` S ) ` x ) ) |
| 28 | 4 23 27 | syl2anc | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( I ` x ) = ( ( invr ` S ) ` x ) ) |
| 29 | 26 28 12 | 3eltr4d | |- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( I ` x ) e. A ) |
| 30 | 29 | ralrimiva | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) -> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) |
| 31 | 5 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> S e. Ring ) |
| 32 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 33 | 1 32 19 | subrguss | |- ( A e. ( SubRing ` R ) -> ( Unit ` S ) C_ ( Unit ` R ) ) |
| 34 | 33 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( Unit ` R ) ) |
| 35 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 36 | 35 32 2 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) ) |
| 37 | 36 | simprbi | |- ( R e. DivRing -> ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) |
| 38 | 37 | ad2antrr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) |
| 39 | 34 38 | sseqtrd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( ( Base ` R ) \ { .0. } ) ) |
| 40 | 18 19 | unitss | |- ( Unit ` S ) C_ ( Base ` S ) |
| 41 | 11 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A = ( Base ` S ) ) |
| 42 | 40 41 | sseqtrrid | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ A ) |
| 43 | 39 42 | ssind | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
| 44 | 35 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 45 | 44 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A C_ ( Base ` R ) ) |
| 46 | difin2 | |- ( A C_ ( Base ` R ) -> ( A \ { .0. } ) = ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
|
| 47 | 45 46 | syl | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) = ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
| 48 | 43 47 | sseqtrrd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( A \ { .0. } ) ) |
| 49 | 44 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> A C_ ( Base ` R ) ) |
| 50 | simprl | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( A \ { .0. } ) ) |
|
| 51 | 50 8 | sylib | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. A /\ x =/= .0. ) ) |
| 52 | 51 | simpld | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. A ) |
| 53 | 49 52 | sseldd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Base ` R ) ) |
| 54 | 51 | simprd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x =/= .0. ) |
| 55 | 35 32 2 | drngunit | |- ( R e. DivRing -> ( x e. ( Unit ` R ) <-> ( x e. ( Base ` R ) /\ x =/= .0. ) ) ) |
| 56 | 55 | ad2antrr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. ( Unit ` R ) <-> ( x e. ( Base ` R ) /\ x =/= .0. ) ) ) |
| 57 | 53 54 56 | mpbir2and | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Unit ` R ) ) |
| 58 | simprr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( I ` x ) e. A ) |
|
| 59 | 1 32 19 3 | subrgunit | |- ( A e. ( SubRing ` R ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Unit ` R ) /\ x e. A /\ ( I ` x ) e. A ) ) ) |
| 60 | 59 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Unit ` R ) /\ x e. A /\ ( I ` x ) e. A ) ) ) |
| 61 | 57 52 58 60 | mpbir3and | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Unit ` S ) ) |
| 62 | 61 | expr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ x e. ( A \ { .0. } ) ) -> ( ( I ` x ) e. A -> x e. ( Unit ` S ) ) ) |
| 63 | 62 | ralimdva | |- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( A. x e. ( A \ { .0. } ) ( I ` x ) e. A -> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) ) |
| 64 | 63 | imp | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) |
| 65 | dfss3 | |- ( ( A \ { .0. } ) C_ ( Unit ` S ) <-> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) |
|
| 66 | 64 65 | sylibr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) C_ ( Unit ` S ) ) |
| 67 | 48 66 | eqssd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) = ( A \ { .0. } ) ) |
| 68 | 15 | ad2antlr | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> .0. = ( 0g ` S ) ) |
| 69 | 68 | sneqd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> { .0. } = { ( 0g ` S ) } ) |
| 70 | 41 69 | difeq12d | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) |
| 71 | 67 70 | eqtrd | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) |
| 72 | 18 19 20 | isdrng | |- ( S e. DivRing <-> ( S e. Ring /\ ( Unit ` S ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) ) |
| 73 | 31 71 72 | sylanbrc | |- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> S e. DivRing ) |
| 74 | 30 73 | impbida | |- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( S e. DivRing <-> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) ) |