This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| Assertion | drhmsubc | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| 2 | drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 3 | drngring | ⊢ ( 𝑟 ∈ DivRing → 𝑟 ∈ Ring ) | |
| 4 | 3 | rgen | ⊢ ∀ 𝑟 ∈ DivRing 𝑟 ∈ Ring |
| 5 | 4 1 2 | srhmsubc | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |